
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB129570

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; MAR
1988. Other requests shall be referred to Air
Force Armament Laboratory, Attn: FXG, Eglin Air
Force Base, Florida 32542-5434. This document
contains export-controlled technical data.

AFSC ltr, 13 Feb 1992

1H!3 REPORT HAS BEEN DELIMI7ED

AND CLtARED FOR PUBLIC RELEA9E

UNDER D(E' DiRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FIJR PUBLIC REL.EASE;

DISTRIBUTION UNLIMITED,

OTIC Ff?r nop* .
AFATL-TR-88-62, VOL III

esoW-jfo

Common Ada Missile Packages—Phase 2
I (CAMP-2)
I

Volume III. CAMP Armonics Benchmarks

S Cohen
T Taylor

AD-B129 570

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY
P O BOX 516
ST LOUIS, MO 63166

NOVEMBER 1988

DTIC
EL.ECTE'
0EC1 21988

^E
D

FINAL REPORT FOR PERIOD SEPTEMBER 1985-MARCH 1988

CRITICAL TECHNOLOGY

Distribution authorized to U.S. Government agencies and their contractors only;
thio report do sum ante tact and ovaluatioft; distribution limitation applied March 1988.
Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542-5434.

DESTRUCTION NOTICE - For classified documents, follow the procedures
in DoD 5220.22-M, Industrial Security Manual, Section 11-19 or DoD 5200.1 - R,
Information Security Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

I AIR FORCE ARMAMENT LABORATORY
Air Force Systems Command I United States Air Force I Eglin Air Force Base, Florida

»8 VI 12 01*

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise as in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
tl.at may in any way be related thereto.

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Jfyl^ C &
STEPHEN C. KORN
Chief, Aeromechanics Division

Even though this report may contain special release rights held by
the controlling office, please do not request copies from the Air Force
Armament Laboratory. If you qualify as a recipient, release approval
will be obtained from the originating activity by DTIC. Address your
request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/FXG, Eglin AFB, FL 32542-5434, to help us maintain a current mailing
list.

Do not return copies of this report unless contractual obligations or
notice on a specific document requires that it be returned.

UNCLASSIFIED
SECMTY tiA&W ICATION 6* THISTAGT

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

Form Approved
OMB No. 0704 -0188

lb. RESTRICTIVE MARKINGS
CRITICAL TECHH0L0(Y

2r. SECURITY CLASSIFICATION AUTHORITY

2b.'DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

3. DISTRIBUTION /AVAILABILITY OF REPORT
Distribution authorized to U.S. Government
Agencies and their contractors;
{ii^PifflEjgBPBigBMiiMiBB (OVER)
S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-62. Volume III

6». NAME OF PERFORMING ORGANIZATION

McDonnell Douglas
Astrnnaiitirs Company

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION
Aeromechanics Division
Guidance and Control Branch

6c ADDRESS (City, State, and ZIP Code)

P.O. Box 516
St Louis MO 63166

7b. ADDRESS (CAy, State. and ZIP Code)

Air Force Armament Laboratory
Eglin Air Force Base, Florida 32542-5434

. NAME OF FUNDING/SPONSORING
ORGANIZATION

STARS Joint Program Office

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F08635-86-C-O025
8c. ADDRESS (Oty. SMte, and ZIP Cod*)

Room 3D139 (1211 Fern St)
The Pentagon
Washington DC 20301-3081

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

637560

PROJECT
NO.

9210

TASK
NO

GT

WORK UNIT
ACCESSION NO.

02
ii. TITLE (indue* security classification) Common Ada Missile Packages-Phase 2 (CAMP-2),

Volume III: CAMP Armonics Benchmarks

12. PERSONAL AUTHOR(S)

S. Cohen and T. Taylor
13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM Sep 85 TO Mar 88
14. DATE OF REPORT (Year, Month, Day)

November 1988
is. PAGE COUNT

70
16. SUPPLEMENTARY NOTATION

Availability of this report is specified on verso of front cover. (OVER)
18. SUBJECT TERMS (Continue on reverse M necessary and identify by Mode number)

Reusable Software, Missile Software, Software Generators,
Ada parts. Composition, Systems, Software Parts

17. COSATI CODES

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The CAMP project, primarily funded ty the STARS Joint Program Office, sponsored by the Air
Force Armament Laboratory, and performed by McDonnell Douglas, has taken a pragmatic
approach to demonstrating the feasibility and utility of the concept of software reuse for
real-time embedded missile systems. CAMP products include: 452 operational flight software
parts in Ada for tactical missiles, and a prototype parts engineering system to support
parts identification, cataloging and construction. In order to demonstrate the value of the
reuse concept, a missile subsystem was built using the CAMP parts. Results indicate a
significant increase in software productivity when developing systems using parts, Ada,
modem software engineering practice, robust software tools, and knowledgeable software
engineers.

This report is documented in three volumes: Volume I - CAMP Parts and Parts Composition
System, Volume II - 11th Missile Demonstration, and Volume III - CAMP Armonics Benchmarks.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DUNCLASSIFIEDAJNLIMITEO 13 SAME AS RPT. Q OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

[22a. NAME OF RESPONSIBLE INDIVIDUAL

[Christine M. Anderson
22b. TELEPHONE (Include Area Code)

(904) 882-2961
22c. OFFICE SYMBOL

AFATL/FXG
DO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

distribution limitation applied March 1988. Other requests for this document
must be referred to the Air Force Armament Laboratory (FXG), Eglin Air Force
Base, Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

TRADEMARKS

The following table lists the trademarks used throughout this document:

TRADEMARK TRADEMARK OF

ACT Advanced Computer Techniques

ART Inference Corporation

ART Studio Inference Corporation

CMS Digital Equipment Corporation

DEC Digital Equipment Corporation

Mikros Mikros, inc.

Oracle
_ .

Oracle Corporation

Scribe Scribe Systems

Symbolics Symbolics, Inc.

Symbolics 3620 Symbolics, Inc.

TLD TLD Systems Ltd

VAX Digital Equipment Corporation

VMS Digital Equipment Corporation

UNCLASSIFIED

PREFACE

This report describes the work performed, the results obtained, and the conclusions reached during

the Common Ada Missile Packages Phase-2 (CAMP-2) contract (F08635-86-C-0025). This work was
performed by Ihe Software and Information Systems Department of the McDonnell Douglas Astronautics

Company, St. Louis, Missouri (MDAC-STL), and was sponsored by the United States Air Force Ar-

mament Laboratory (FXG) at Eglin Air Force Base, Florida. This contract was performed between Sep-

tember 198S, and March 1988.

The MDAC-STL CAMP program manager was:

Dr. Daniel G. McNichoIl
Technology Branch
Software and Information Systems Department
McDonnell Douglas Astronautics Company
P.O. Box 516
St. Louis, Missouri 63166

The AFATL CAMP program manager was:

Christine M. Anderson
Guidance and Control Branch
Aeromechanics Division
Air Force Armament Laboratory
Eglin Air Force Base, Florida 32542-5434

This report consists of three volumes. Volume I contains information on the development of Ihe

CAMP parts and the Parts Composition System. Volume II contains the results of the 11th Missile

Application development. Volume III contains the results of the CAMP Armonks Benchmarks Suite

development.

Commercial hardware and software products mentioned in this report are sometimes identified by

manufacturer or brand name. Such mention is necessary for an understanding of the R & D effort, but

does not constitute endorsement of these items by the U.S. Government.

ACKNOWLEDGEMENT

Special thanks to ihe Armament Division Deputy for Armament Control Office; to Ihe Software

Technology for Adaptable, Reliable Systems (STARS) Joint Program Office; to the Ada Joint Program
Office (AJPO); and to Ihe Air Force Electronic Systems Division, Computer Resource Management

Technology Program Office for Iheir support of this project.

iii

Accession For

HTIS GRA&I
DTIC TAB
Unannounced
Justlfloatlon.

□

8
By
Distribution/

Availability Codes

Avail and/or*
Special

—

TRADEMARKS

The following table lists the trademarks used throughout this document:

TRADEMARK TRADEMARK OF

ACT Advanced Computer Techniques

ART Inference Corporation

ART Studio Inference Corporation

CMS Digital Equipment Corporation

DEC Digital Equipment Corporation

Mikros Mikros, Inc.

Oracle Oracle Corporation

Scribe Scribe Systems

Symbolics Symbolics, Inc.

Symbolics 3620 Symbolics, Inc.

TLD TLD Systems Ltd

VAX Digital Equipment Corporation

VMS Digital Equipment Corporation

Table of Contents

Section Title Page
I INTRODUCTION 1

1. Identification 1
2. System Overview 1

3. Volume Overview 2

II BENCHMARK DEFINITIONS 3

1. Benchmark Levels 3

2. Benchmark Classes 3

a. Compilation Benchmark Class 3

b. Polynomial Benchmark Class 3
c. Integrated Execution Benchmark Class 4

d. Summary 5

III PURPOSE AND DESIGN 8

1. General Requirements 8
a. Identifying Ada Compiler Inadequacies 8

b. Testing Calculation Accuracies 9

c. Testing Time and Space Performance 9

2. Compilation Benchmarks 10

a. Compilation Group 1 10
b. Compilation Group 2 12

c. Compilation Group 3 12

3. Integrated Execution Benchmarks 14

a. Integrated Execution 1 14

b. Integrated Execution 2 IS

c. Integrated Execution 3 16

4. Polynomial Benchmarks 17

IV METHODOLOGY 22

1. Portability 22

2. Compilation Benchmark Methods 23

3. Execution Benchmark Methods 23
a. Collecting Valid Timing Data 23

b. Collecting Benchmark Output Data 26

c. Automation of the Execution Benchmarks 26

V USING THE BENCHMARKS 28

1. Logical Directories 28

2. Using the Compilation Benchmarks 28

Table of Contents (CONCLUDED)

Section Title Page

3. Compiling Ihe Polynomial and Integrated Execution Benchmarks 30

4. Running the Execution Benchmarks 31

a. Polynomial Benchmark Execution 31

b. Integrated Execution Benchmarks 32

Appendix

A ARMONICS BENCHMARK SUITE 35

1. Compilation Benchmark Data 35

2. Polynomial Benchmark Data 36

3. Integrated Execution Benchmark Data 38

B ADA SOURCE CODE INVENTORY 45

vi

List of Figures

Figure Title Page

1 Compilation 1 Structure 10

2 Compilation 2 Structure 13

3 Compilation 3 Structure 13
4 Identity Function Defeats Constant Propagation 24

5 Tautological Function Prevents Assignment Removal 25

A-l Radian Sine on System A 39

A-2 Radian Cosine on System A 39

A-3 Radian Tangent on System A 39
A-4 Arcsine on System A 39

A-5 Arccosine on System A 40

A-6 Radian Arctangent on System A 40

A-7 Radian Sine on System B 40
A-8 Radian Cosine on System B 40

A-9 Radian Tangent on System B 41
A-10 Arcsine on System B 41
A-l 1 Arccosine on System B 41

A-12 Radian Arctangent on System B 41

vii

List of Tables

Table Tide Page

1 CAMP Armonics Benchmark Summary 6
2 CAMP Part Benchmarks of Integrated Execution 1 14

3 CAMP Part Benchmarks of Integrated Execution 2 15

4 CAMP Part Benchmarks of Integrated Execution 3 16
5 CAMP Polynomial Parts Execution Benchmarks 17

6 Detail of Sine Performance Benchmarks 18
7 Detail of Cosine Performance Benchmarks 19

8 Detail of Tangent Performance Benchmarks 20

9 Detail of Arcsine Performance Benchmarks 20

10 Detail of Arccosine Performance Benchmarks 20

11 Detail of Arctangent Performance Benchmarks 21
12 Detail of Square Root Performance Benchmarking 21

13 Benchmark Suite Command Procedures 29

A-l Compilation Benchmark Data 36

A-2 System B Polynomials Sizes 37

A-3 Timing of Integrated Execution 1 42
A-4 Timing of Integrated Execution 2 43

A-5 Timing of Integrated Execution 3 44
B-l Ada Source Code Inventory 46

viii

List of Acronyms

ACS Ada Compilation System

ACVC Ada Compiler Validation Capability

AdpIUG Ada/Jovial Users Group

ADL Ada Design Language

AFATL Air Force Armament Laboratory

AFB Air Force Base

AI Artificial Intelligence

AJPO Ada Joint Program Office

AMPEE Ada Missile Parts Engineering Expert (System)

AMRAAM Advanced Medium Range Air-to-Air Missile

ANSI American National Standards Institude

APSE Ada Programming Support Environment

Armonics Armament Electronics

ART Automated Reasoning Tool

ASCII American Standard Code for Information Interchange

BC Bus Controller

BDT Basic Data Types

BIM Bus Interface Module

CAD/CAM Computer-Aid Design/Computer-AitM Manufacturing

CAMP Common Ada Missile Packages

CCCB Configuration Change Control Board

CDRL Contractual Data Requirements List

CMS Code Management System

ConvFactors Conversion_Factors (TLCSC)

CPDS Computer Program Development Specification

CPPS Computer Program Product Specification

CSC Computer Software Component

CSCI Computer Software Configuration Item

CVMA Coordinate_Vector_Matrix_Algebra (TLCSC)

DACS Defease Analysis Center for Software

DBMS Data Base Management System

DCL DIGITAL Command Language

DDD Detailed Design Document

DEC Digital Equipment Corporation

DMA Direct Memory Access

DoD Department of Defense

DoD-STD Department of Defense Standard

DPSS Digital Processing Subsystem

DSR Digital Standard Runoff

DTM DEC/Test Manager

FMS Forms Management System

FORTRAN FORmula TRANslation

GPMath General_Purpose_Math (TLCSC)

HOL Higher-Order Language

Hr Hour

I/O Input/Output

ISA Inertia] Sensor Assembly

JOVIAL Jules Own Version of International Algebraic Language

LISP List Processing (language)

LLCSC Lower Level Computer Software Component

LOC Lines of Code

MDAC McDonnell Douglas Astronautics Company

MDAC-HB McDonnell Douglas Astronautics Company - Huntington Beach

MDAC-STL McDonnell Douglas Astronautics Company - St. Louis

MDC McDonnell Douglas Corporation

M1L-STD Military Standard

MRASM Medium Range Air-to-Surface Missile

NM Nautical Miles

NPNav North_Poinun£_Navigation_Parts (TLCSC)

OCU Operator Control Unit

Opns Operations

PC Personal Computer

PCS Parts Composition System

PDL Program Design Language

R&D Research and Development

RT Remote Terminal

RTE Real-Time Embedded

SDF Software Development File

SDI Strategic Defense Initiative

SDN Software Development Notebook

SDR Software Discrepancy Report

SEAFAC System Engineering Avionics Facility

SEI Software Engineering Institute

SEP/SCP Software Enhancement Proposal/Software Change Proposal

SIG Ada Special Interest Group on Ada

SRS Software Requirements Specification

STARS Software Technology for Adaptable, Reliable Systems

stint statement

SURMOS Start-Up Real-time Multi-tasking Operating System

TLCSC Top-Level Computer Software Component

TLDD Top-Level Design Document

UnivConst Universal_Constanls (TLCSC)

VAX Virtual Address Extension

VMS Virtual Memory System

WGS72 World Geodetic System, 1972

xi/xii (Blank)

SECTION I

INTRODUCTION

I. IDENTIFICATION

The CAMP Armories Benchmark Suite facilitates (he evaluation of Ada software engineering en-

vironments and microprocessors intended for use in armonics1 applications. The suite features both

compilation and execution benchmarks to measure the capabilities of compiler/run-time systems. All

benchmarks in this suite are portable and vv ill permit comparisons to be made between widely different

Ada systems.

This volume identifies the benchmarks and benchmark drivers, and suggests techniques for applying

the Benchmark Suite. In addition, the structure, purpose, and methodology of the suite are explained to

familiarize readers with the suite and to facilitate the evaluation of the suite by engineers. For those

interested in using the benchmarks, a guide is provided in Section V. Appendix A contains data collected

in the process of running the Benchmark Suite.

2. SYSTEM OVERVIEW

This Armonics Benchmark Suite serves a dual purpose: it offers a means for assessing the perfor-

mance of CAMP parts and, at the same time, provides support for evaluating the suitability of compiler

systems ami their target machines to armonics applications.

Ada compiler performance is tested by a series of compilations, based on CAMP packages, which

require a compiler to process complex uses of Ada generic units. These advanced (but standard) Ada

features are used heavily in the CAMP parts and are central to (he development and use of reusable

software.

Other benchmarks of the suite are targeted primarily at run-time performance issues such as storage

requirements, execution time, and computational accuracy. These benchmarks consist of a selection of

CAMP parts which have been chosen as representative of the needs of armonics applications. Testing,

using these benchmarks, is facilitated by embedding the benchmarks within portable drivers, written in

Ada. Effectively, this allows the benchmarks to run themselves.

The Benchmark Suite can support a number of benchmarking scenarios:

• A project wishes to evaluate compilers for use in the development of a reusable parts library. The

Mrife provides test code for evaluating compiler/linker systems.

• A compiler developer wants to measure the performance of his compiler/run-time system against an

established r'wlard. A group of benchmarks documented in this volume provides a standard for

comparison between different systems.

armament electronics

• An armonics application needs data on the memory utilization and timing efficiency of several

compilers in order to select an appropriate compiler for a new project. The benchmarks provide

opportunities for measuring these features of a given compiler.

• A potential user of CAMP parts wants specific performance data on the parts. The Benchmark

Suite gives a user the ability to measure performance for a selected group of parts on varying

architectures.

• A scientific application requires transcendental functions of known accuracy on a specific system

and is considering the CAMP polynomial parts. The benchmarks supply data on the scientific

functions of the CAMP Polynomials package.

The Benchmark Suite is supplemented by a set of procedures, encoded in DEC VAX Digital Com-

mand Language (DCL). By performing these procedures (or their equivalents on other operating
systems), an engineer may install, compile, and run the various benchmarks efficiently. Details on the use

of the Benchmark Suite and its command procedure environment are discussed in Section V.

3. VOLUME OVERVIEW

This report contains five main sections:

1. Introduction: Introduces the CAMP Benchmark Suite and this volume.

2. Benchmark Definitions: Explains the system of classes and levels by which the benchmarks are

characterized. This section also introduces key terms and gives a tabular summary of benchmarks

contained in the suite.

3. Purpose and Design: Discusses the procedure used to run each of the benchmarks and gives

information about their structure and scope. For each benchmark, this section provides the follow-

ing information where applicable:

• Benchmark name • Benchmark correct outputs

• Compilation structure • Data to be recorded

• Benchmark driver design • Methods for recording data

• Benchmark inputs

4. Methodology: Gives the overall methodology used to construct the Benchmark Suite in terms of

portability, validity, and usability.

5. Using the Benchmarks: Explains how to use the benchmarks on a project. Emphasis is placed on

making use of (he suite command procedure environment to facilitate benchmarking.

SECTION II

BENCHMARK DEFINITIONS

1. BENCHMARK LEVELS

The CAMP Armonics Benchmark Suite supports benchmarking at three hierarchical levels:

• TLCSC benchmarks: complete operational subsystems;

• LLCSC benchmarks: sequentially driven calls to integrated CAMP parts;

• Unit benchmarks: benchmarks of individual parts. (This level is generally reserved for the

benchmarks derived from CAMP polynomial parts .)

2. BENCHMARK CLASSES

The benchmark suite is functionally partitioned into three classes. The compilation benchmarks test

the ability of an Ada compiler to process source code typical of armonics applications and reusable

software. Benchmarks based on the CAMP Polynomials scientific function package are called the
polynomial benchmarks. Finally, the benchmarks developed from CAMP higher-level armonics parts are

referred to as integrated execution benchmarks. The following subsections define the three classes of

benchmarks in greater detail.

a. Compilation Benchmark Class

The compilation benchmarks test an Ada compiler's ability to process reusable software. The

benchmarks concentrate on the complex syntax and semantics of several Ada armonics-oriented im-

plementations using CAMP parts. These implementations are skeletal in that they do not actually imple-

ment an armonics subsystem but merely collect the necessary CAMP parts via generic instantiation. The

instantiated parts are invoked in the benchmark code although the run-time effects of the invocations are

not within the designed scope of testing. The compilation benchmarks are valid tests of a compiler only

up to (and including) the linking phase.

b. Polynomial Benchmark Class

The Benchmark Suite includes benchmarks based on the CAMP Polynomial parts (part number

P688). These parts cover a range of basic mathematical functions, and provide a variety of techniques for

obtaining results. For each benchmark, the benchmark drivers obtain both execution time data and func-

tion argument-result pairs. In addition, compilation and linkage editing of the polynomial benchmarks

afford an opportunity to collect object code size data on all of (lie functions of the Polynomials package.

A software tool provided with the Benchmark Suite performs accuracy analysis and generates
reports Tor the polynomial benchmarks. This tool lakes the output produced by the benchmarks and

generates a document incorporating time-consumption data and function-result accuracy measurement.

The following information is provided by the tool:

• 'Truth values" for each function over that function's benchmarked domain;

• Absolute error in the result of each argument-result pair

• Relative error in the result of each pair

• Maximum relative error tracking over the argument domain

• Maximum absolute and relative error over the argument domain

• Root-mean-square relative error over the argument domain

c. Integrated Execution Benchmark Class

The integrated execution benchmarks test aggregations of CAMP armonics parts. These

benchmarks concentrate on three of the major operational functions supported by the CAMP parts:

• Waypoint steering

• Navigation

• Kalman filter

In the waypoint steering and navigation cases above, data is gathered on CAMP parts in the

context of an armonics application. This method has the virtue of testing the parts in the kinds of

programs in which they will actually be applied. The benchmark based on the CAMP Kalman filler parts

provides data on these parts as they operate in a unit testing environment. This method permits the full

inclusion of all subprograms in the CAMP Kalman filter subsystem TLCSCs.

Output data from the integrated execution benchmark drivers consists of timing and result data

on the benchmark subprograms. The timing data characterizes the execution time required to make a

single call to the benchmark subprogram. The result data from the subprogram may be compared with the

standard data supplied by CAMP as part of the Benchmark Suite. This comparison allows the engineer

performing the benchmarks to spot errors and inaccuracies in run-time data processing on his system.

<l. Summary

Table 1 summarizes the benchmarks in (he CAMP Armonics Benchmark Suite. For each
benchmark, the table provides the following information:

• Benchmark name

• Benchmark number: a unique number for each set of benchmarks, corresponding to Section HI of

this document. This number gives the subsection and the paragraph of Section III where the

benchmarks are described. In the case of the polynomial benchmarks, only the subsection number is

applicable. The paragraph number tabulated for the polynomial benchmarks is only for serializa-
tion.

• Level: TLCSC (T), LLCSC (L), or Unit (U) as defined above

• Class: Compilation (C), Polynomial (P), or Integrated Execution (I) as defined above

• Objective: the objective of the benchmark

• Description: a description of the TLCSCs used in the benchmark (for the polynomial benchmarks,
the description lists the polynomial expansion algorithm tested)

• Data to be recorded: summary of data values generated by running the benchmark and recorded in
Appendix A of this report

TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY

(1 OF 2)

Benchmark Data

Name No. Lev. Cb. Objective Description to Record

Compilation 1 2.1 L C Test compilability of
parts needed in North
Pointing Navigation.

Packages compiled:
N_P_NavJ>arl»,
Polynomial_Part«,

General_Purpose_Math,
Coord_Veclor_Matrix_Alg,

StandardJTrig,
Basic_Data_Types,

Conversion_F»ctor»,
WOS72 (Metric).

WGS72 (Unities*).
Universal_Constants

Object code size.
Successful compile.
Compilation time.

Compilation 2 2.2 L C Test compilability of
parts needed in Waypoint

Steering.

Packages compiled:

Waypoint_Steering,
Oeometric_Operations,
Coord_Vector_Matrix_Alg,
Polynomial_Parts,
Oeneral_Purpose_Math,

StandardJTrig,
Basic_Data_Types,
Conversion_Factors,
WOS72 (Metric),

Object code size.
Successful compile.

Compilation time.

Compilation 3 2.3 L C Test compilability of

Universal_Constants

Packages compiled: Object code size.

parts needed in Kalman Kalm_Rlter_Compt_H_Par1s, Successful compile.

Filter. Kahn_Fiher_Common_Parts,
Polynomial_Parts,
Oeneral_Purpose_Malh,
Kahnan_Data_Types,

Compilation time.

Integrated 3.1 T
j

Test execution efficiency

General_Vector_Mau-ix_Alg

Packages tested: Execution lime.

Execution 1 of a guidance compulation Waypoim_Steering, Code size.

Integrated 3.2 T I

implementation.

Test execution efficiency

S ignal_Processmg Result data.

Packages tested: Execution time.

Execution 2 of a navigation operations
implementation.

Cotnm_Navigation_Parts,
Directton_Cosme_Matrix
Oeneral_Purpose_Math,
Oeneral_Vector_Matrix_Alg,

Code size.
Result data.

Integrated 3.3 T I Test execution efficiency

Wander_Az_Nav_Parts

Packages tested: Execution time.

Execution 3 of a Kalman Filter
implementation.

Abstract_Data_Structs,
Kabn_Filter_Common_Parts,
Kalm_Filter_ComptJl_Parts,

Kalm_filter_Compx_H_Parts.

Code size.
Result data.

Sine 4.1 U P Test execution efficiency Methods tested are: Execution lime.

Execution and result precision
of sine function.

Taylor Series,
Modified Taylor Series,

Hastings Algorithm,
Chebyshcv Polynomial,

System Functions

Code size.
Result Data

Conine 4.2 U P Test execution efficiency Methods tested are: Execution lime.

Execution and result prn ivion
of cosine function.

Taylor Scries,
Modified Taylor Series,
Hastings Algorithm,
Hart Algorithm,

System Functions

Code size.
Result Data

TABLE 1. CAMP ARMONICS BENCHMARK SUMMARY (CONCLUDED)

Benchmark
Name No. Lev. Ch. Objective Description

Data
to Record

Tangent

Execution

4.3 U P Teal execution efficiency
and result precision

of tangent function.

Methods tested are:

Taylor Series,
Modified Taylor Series.
Hastings Algorithm,
System Functions

Execution time.

Code size.
Result Data

Arcsine
Execution

Arccosine
Execution

4.4

4JS

U

0

P

P

Test execution efficiency
and result precision
of arcsine function.

Test execution efficiency
and result precision
of arccosine function.

Methods tested are: Execution time.
Taylor Series, Code size.
Fike Semicircle, Result Data
System Functions

Methods tested are:
Taylor Series,

Fike Semicircle,
System Functions

Execution time.
Code size.
Result Data

Arctangent
Execution

4.6 u P Test execution efficiency
and result precision

of arctangent function.

Methods tested are:
Taylor Series,

Continued Fraction,
Hastings Algorithm,
System Functions

Execution time.
Code size.
Result Data

Square Root
Execution

4.7 V P Test execution efficiency
and result precision
of square root function.

Methods tested are:

Newton-Raphson
Modified Newton-Raphson

Execution time.
Code size.
Result Data

Lug 10
Execution

LogN
Execution

4.8

4.9

u

u

P

P

Test execution efficiency
and result precision
of log 10 function.

Test execution efficiency
and result precision
of log n function.

Methods tested are:
Taylor Series,
Cody-Wate,
System Functions

Execution time.
Code size.
Result Data

Methods tested are:
Taylor Series,
Cody-Waiks,
System Functions

Execution time.
Code sire.
Result Data

Natural Log
Execution

4.10 u P Test execution efficiency
and result precision
of natural log function.

Methods tested are:
Taylor Series,
Cody-Wane

Execution time.
Code size.
Result Data

SECTION III

PURPOSE AND DESIGN

1. GENERAL REQUIREMENTS

The CAMP Armonics Benchmark Suite meets the following general requirements:

• Utilizes CAMP parts in structures which simulate their actual use in typical user applications

• Utilizes test data modeled on typical user application data

• Helps assess Ada compilation capabilities, object code size, execution time, and output results

• Permits comparison between a variety of host/target combinations using different Ada
compiler/run-time systems

• Allows modification to meet specific needs of future users

• Exhibits high portability

• Is highly automated

a. Identifying Ada Compiler Inadequacies

One problem faced during the development of the CAMP parts was the inability of some Ada
compilers to process complex generic units. This is important because Ada generic units play a pivotal
role not only in the future development of reusable software, but also in the application of that software.
In order to identify Ada compiler inadequacies in the area of reusable software the CAMP benchmarks
provide Ada source code benchmarks which heavily utilize Ada generic units.

The compilation benchmarks of the Armonics Benchmark suite go beyond the limited scope of
testing in the official Ada Compiler Validation Capability (ACVC) tests. While the ACVC tests
demonstrate conformance to the Ada language specification, the effect of combining language features in
complex ways is not sufficiently addressed. The CAMP compilation benchmarks attempt to bridge the
gap between the objectives of the ACVC tests and the necessities of complex software applications. It is
believed at this point that very few ACVC-validated Ada compilers will, in fact, correctly handle the
CAMP compilation benchmarks.

b. Testing Calculation Accuracies

The CAMP parts, including those selected as benchmarks, consist or portable Ada source code.

However, certain aspects or the runtime performance of the parts may still vary from system to system.

The accuracies of numeric compulations, for instance, are guaranteed by the Ada language definition to

meet the minimum requirements specified in the software, but, this does not mean that different compiler

implementations of Ada will handle numeric computations in the same way. A compiler is free both to

provide more accuracy than is requested by application software, and to support less accuracy based on

the limitations of the target machine. For this reason, the results of calculations performed by portable

software may not themselves be portable. Differences in numeric accuracies and range limits in Ada

systems introduce the possibility of unanticipated error in extensive calculations. This factor must be

considered by potential users of the CAMP parts as it would have to be by users of any software (or

hardware) product.

The two classes of execution benchmarks (polynomial and integrated execution) in the Ar-

monics Benchmark Suite address the issue of varying computational accuracies in different Ada systems.

They provide a standard means of generating data from the kinds of complex calculations involved in

armonics applications.

c. Testing Time and Space Performance

An important performance factor in real-time embedded (RTE) environments is space and time

efficiency: Software must be kept small because hardware must be kept small in RTE systems; software
must also operate efficiently because of the throughput requirements of real-time processing. The execu-

tion benchmarks of die Benchmark Suite support execution-time testing of CAMP parts as they operate

on various Ada compiler/target machine systems. Selected CAMP parts make up the benchmarks which

cover operations common to many armonics applications.

The size of the object code generated from the benchmarks reflects the qualities of the compiler,

the CAMP parts, and, to a lesser extent, the instruction set architecture of the application target machine.

Although RTE systems are being built with more and more memory, hardware capacity and its associated

costs are still the major limiting factor in increasing the computational power of embedded applications.

The execution benchmarks of the Benchmark Suite should facilitate the evaluation of Ada compiler/linker

systems based on object code size. Linker map data, obtained by compiling and linking the benchmarks,

can be utilized in judging an Ada system's appropriateness to an embedded application in the light of

hardware capacity constraints.

2. COMPILATION BENCHMARKS

The purpose of the compilation benchmarks is to determine the compilability and linkability of a
large selection of CAMP parts integrated into typical annonics application groupings. Results from
compiling this series of benchmarks reflect on the ability of Ada compilers to correctly process CAMP
parts. Since these parts are both reusable and armonics application-oriented, the validity of the
benchmarks extends strongly to these two areas.

a. Compilation Croup 1

CAMP parts utilized as benchmarks in Compilation Group 1 represent those which might be
needed in a north-pointing navigation implementation. The structure, components, and operating proce-
dure of this compilation benchmark follow.

NPNav USER APPLICATION PROGRAM

pkgVilSqRt b naw GPMati.Square_Root...
pkg AngVelSqRt Is new QPMath.Squara_.Root...
pkg AccelSqRt Is naw QPMaJh.Square_Root...
pkg DIstSqRt Is naw QpMath.Sojuara_Root...

pkg VelVOpns Is naw CVMA.Vactor_Opns ...
pkg AngValVopns Is naw CVMA.V«ctof_Opns ...
pkg Accel VOpns Is naw CVMA.Vector Opns ...
pkg DtetVOpns Is naw CVMA.Vactor_Opre...
fn CrossProd_AW_W Is naw CVMA.Cross_Produot...

fn CorAccel Is naw NPNav.Computa_Corio*s_AcealaraHon
pkg RadOfCurv Is new NPNav. RadlusofCurvature ...
pkg Latlnt Is new NPNav.Latitudelntegratlon ...

Figure 1. Compilation 1 Structure

• Compilation structure: Figure 1 depicts the compilation structure. An Ada main procedure is

compiled in the context of several CAMP packages. The order of compilation for the packages

corresponds to the partial ordering induced by the context clauses {with statements) of the packages

>>►

10

and driver procedure. A command file in the tool set supplied with the benchmark suite gives a

correct compilation order and compiles the compilation benchmarks automatically on VAX/VMS.

• Benchmark driver design:

1. Import North_Pointing_Navigation_Parts (CAMP part number POO I), General_Purpose_

Math (P687), Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621),

WGS72_EUipsoid_Metric_Data (P611), WGS72_EUipsoid_Unitless_Data (P613), and

SYSTEM.

2. Begin main procedure definition.

3. Declare types and subtypes necessary for benchmark.

4. Instantiate generic units. ;om imported packages.

5. Declare objects necessary for benchmark.

6. Invoke instantiated and derived subprograms (executable part of driver).

7. End main procedure definition.

• Data to be recorded:

1. Successful compilation;

2. Successful link;

3. Object code size (size of load module produced, if any);

4. CPU time consumed by the compiler.

• Methods for recording data: The source files for this compilation benchmark are compiled in one

group with the source files for the others. Error-free compilation is indicated by the compiler

through listings or by some other mechanism. CPU time consumption is noted when it is reported

by the compiler. The driver program is then linked and the size of the executable image recorded.

II

b. Compilation Croup 2

CAMP parts utilized as benchmarks in Compilation Group 2 represent those which might be

needed in the waypoinl steering of a missile application. The structure, components, and operating proce-

dure of this compilation benchmark follow.

• Compilation structure: Figure 2 depicts the compilation structure. The structure is similar to that

of Compilation Group 1.

• Benchmark driver design:

1. Import Waypoint_Steering (CAMP part number P661), General_Purpose_Math (P687),

Coordinate_Vector_Matrix_Algebra (P681), Basic_Data_Types (P621), WGS72_Ellipsoid_

Metric_Data(P611).

2. Begin main procedure definition.

3. Declare types and subtypes necessary for benchmark.

4. Instantiate generic units from imported packages.

5. Declare objects necessary for benchmark.

6. Invoke instantiated and derived subprograms.

7. End main procedure definition.

• Data to be recorded: As in compilation group 1

• Methods for recording data: As in compilation group 1

c. Compilation Croup 3

CAMP parts utilized as benchmarks in Compilation Group 3 represent those which might be

needed in a Kalman filter of a missile application. The structure, components, and operating procedure of

this compilation benchmark follow.

• Compilation structure: Figure 3 depicts the compilation structure. The structure is similar to that

of the other two compilation groups.

• Benchmark driver design:

1. Import Kalman_Filter_Complicated_H (CAMP part number P653) and Kalman_Filter_

Data_Types (P622).

2. Begin main procedure definition.

3. Declare types and subtypes necessary for benchmark.

4. Instantiate generic units from imported packages.

12

Goo

WPS

USER APPLICATION PROGRAM

pkg SCRSqRoot Is new GPMath. SquareRoot ...
pkg VelSqPoot is neti GPMath. SquareRoot ...
pkg MSqRoot is new GPMath. SquareRoot ...

pkg OnitVelVopns is new CVMA.VectorOpna ...
pkg VelVOpns is new CVMA.Vector_Opns ...
fn CrossProd is new CVMA.Crosa_Product ...

pkg SVO is new WPS.Steering_Vector Operations ...
pkg CTEHOpns is new *PS.Cros8track_and HeadingErrorOperations

Figure 2. Compilation 1 Structure

4" X
Poly GPMath

wmv

I KFCommon

KFComplicatad

W H

KDT

GVMA

USER APPLICATION PROGRAM

pkq KPT is new Kalman_Filter_Data_Types ...

fn Kalman Gain is new KalmanFilter Complicated_H_Parts.
Compute KaTmanGain ...

pk<j KPIpdate is new Kalman Gilter Complicated_H_Parts.
Kalman Update ...

Figure 3. Compilation 3 Structure

13

5. Invoke instantiated subprograms.

6. End main procedure definition.

• Data to be recorded: As in the other two compilation groups

• Methods for recording data: As in the other two compilation groups

3. INTEGRATED EXECUTION BENCHMARKS

This section describes execution benchmarks based on CAMP parts, both integrated for use in a
typical missile application and in a unit-testing environment. The purpose of the integrated execution
benchmarks is to generate data on these CAMP parts and to afford an opportunity for determining code
sizes.

a. Integrated Execution I

In this section a benchmark based on a guidance computer implementation is described. Table
2 lists the CAMP parts used in this benchmark.

TABLE 2. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 1

TLCSCNAME PART NO. LLCSC NAMES

Waypoint Steering P66I Compute Turn Angle and Direction
Compute Turning and Nonturnmg Distances
Distance to Current Waypoint
Steering Vector Operation* with Arcaine
Turn Test Operations
Cross Track and Heading Error Operations

Signal Processing Parts P686 Absolute Limiter
Upper Lower Limiter

• Benchmark Driver Design: This benchmark is based on the guidance computer of a missile ap-

plication. The driver consists of several task bodies declared in the declaration section of a main

procedure. These tasks are activated after the elaboration of the driver declaration section. A null

executable part of the driver runs to completion and awaits the termination of the tasks.

The tasks call the benchmark subprograms in the course of execution. A counter keeps track of

calls to a central message management task. When the counter value reaches a certain level, the

task is aborted and becomes abnormal. As the other tasks attempt to rendezvous with the aborted

task, they are forced to select a "terminate" entry. Then, these tasks also become abnormal When

the child tasks of the driver have all become abnormal, the driver terminates execution.

• Data to be recorded:

- Execution time

- Code sizes

14

• Result data

• Methods for recording data: Execution time is obtained directly from the benchmark driver. The

code sizes of the various CAMP parts may be taken from linker map files. Result data is also

generated directly by the benchmark.

• Benchmark inputs: Before execution, the benchmark driver requests data about the system: the

compiler used, the compiler host, and the compiler target. Then iteration values are requested to

tell the driver how many times to execute a benchmark subprogram. The benchmarks themselves

are supplied with hard-coded input data by the driver software. These inputs are coded as variables

to preserve the functionality of the benchmarks, which would not normally process static data.

• Benchmark correct outputs: A File containing standard output is supplied with the benchmark suite.

It should be used for comparison with the actual benchmark output.

b. Integrated Execution 2

In this section a benchmark based on a navigation computer implementation is described. Table

3 lists the CAMP parts used as benchmarks.

TABLE 3. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 2

TLCSCNAME

Common Navigation Paris

Wander Azimuth Navigation Parts

Direction Conine Matrix

General Vector Matrix Algebra

General Purpose Math Parts

PART NO. LLCSC NAMES

P0OI Update Velocity
Compute Ground Velocity
Compute Gravitational Acceleration Sin Lai In

P002

PM4

P682

P687

Radius of Curvature
Compute East Velocity
Compute North Velocity
Compute Latitude using 2-Value Arclan
Compute Longitude using 2-Value Arctan
Compute Wander Azimuth Angle
Earth Rotation Rate
Earth Relative Navigation Rotation Rates
Compute Coriolis Acceleration
Total Platform Rotation Rate

CNE Operations

Matrix Matrix Multiply Restricted

Accumulator

• Benchmark Driver Design: This set of three benchmark drivers is based on the navigation opera-

tions of a missile application. Each driver uses the same basic Ada linkage closure of units, sub-

stituting dummy code is appropriate. The first phase of the benchmarking run is done by the

driver, "Execute_Navigalor_Test," which calls most of the benchmark subprograms. The remain-

ing benchmark subprograms are called by two drivers embedded in the executable part of the

Navigation Operations package.

• Data to be recorded:

15

1. Execution lime

2. Code size

3. Result data

• Methods for recording data: As in Integrated Execution 1

• Benchmark inputs: As in Integrated Execution I

• Benchmark correct outputs: As in Integrated Execution 1

c. Integrated Execution 3

In this subsection a benchmark based on the CAMP Kalman filter unit tests is described. Table
4 lists the CAMP parts used as benchmarks.

TABLE 4. CAMP PART BENCHMARKS OF INTEGRATED EXECUTION 3

TLCSCNAME PART NO. LLCSC NAMES

Kalman Filter Common Parts P65I Error Covariance Matrix Manager
State Transition and Piocesa Noise Matrices Manager
State Transition Matrix Manager

Kalman Filler Compact H Parts P6S2 Compute Kalman Gains
Update Error Covariance Matrix
Update State Vector
Sequentially Update Covariance Matrix And State Vector
Kalman Update
Update Error Covariance Matrix General Form

Kalman Filler Complicated H Parts P653 Compute Kalman Gam
Update Error Covariance Matrix
Update Stale Vector
Sequentially Update Covariance Matrix And Stale Vector
Kalman Update
Update Error Covariance Matrix General Form

• Benchmark driver design: The three drivers of this benchmark are based on the unit tests of the

CAMP Kalman Alter parts (P6S1, P6S2, and P6S3). Three main procedures import the three Kal-

man TLCSCs and call the benchmark subprogram," within them.

• Data to be recorded:

- Execution time

- Code size

- Result data

• Methods for recording data: As in the other two integrated execution benchmarks

• Benchmark inputs: As in the other two integrated execution benchmarks

• Benchmark correct outputs: As in the other two integrated execution benchmarks

16

4. POLYNOMIAL BENCHMARKS

The purpose of the polynomial benchmarks is lo generate run-lime data on the "slide rule" functions

of the CAMP Polynomials package and lo provide an opportunity Tor collecting object code size data.

The run-time data on the benchmarks is produced by benchmark drivers and includes information both on

the time-consumption of the benchmarks and the numeric output they produce.

Table 5 presents a summary of the execution benchmarks which have been created from the CAMP

Polynomials parts. Entries marked "X" indicate a function and a numerical algorithm. For each math-

ematical function of the CAMP Polynomials package, all of the available algorithm implementations are

used as benchmarks. The floating point types of the arguments and results are varied according to the

number of terms in each algorithm's polynomial expansion. For example, an algorithm for a 5-term

polynomial expansion may be instantiated to use 6 floating-point digits while an algorithm for a 7-term

expansion is instantiated to use 9 digits.

TABLE 5. CAMP POLYNOMIAL PARTS EXECUTION BENCHMARKS

Function

Sine

Cosine

Tangent

Arcsine

Arccosine

Arctangent

Square root

Taylor
Series

X

X

X

X

X

X

Modified
Taylor
Series

X

X

X

Hastings

X

X

X

X

Chebyshev

X

System
Functions

X

Hart Fike
Continued
Fraction

Newton-
Raphaon

Modified
Newton
Raphson

Cody-
Wake

X

X

X

X

X

X

X

X

X

X

X

X

Log 10

Log2

Nat Log

■ - - - ■

X X

X

X

X

Tables 6 through 12 present details of the polynomial function benchmarking. An "X" entry in a

table indicates an algorithm for computing a function and the number of terms of that algorithm to be

applied in the compulation. Detail tables are not included for the various log functions shown in Table 5
since the log function testing is confined to the Polynomials Cody-Waite LLCSC. Term counts are not

applicable lo the parts of this LLCSC.

• Benchmark driver design (for all polynomial benchmarks):

1. Import the CAMP Polynomials package (P688), Benchmarking_Tools package, and the

Polynomial_Benchmark package.

2. Define a floating point type of some precision.

3. Instantiate a Polynomials package LLCSC for the defined type.

4. Instantiate the Polynomial_Benchmark package for the defined type.

17

TABLE 6. DETAIL OF SINE PERFORMANCE BENCHMARKS

Number
of

Term
Taylor
Serin

Modified
Taylor
Serin

ll»«linf*
AlgifiUim

Ctabyahev
Polynomial

system
Fnactioni

4

5

6

7

S

VAX

X

X

X

X

X

X

X

X

X

X

X

X X

X

5. Instantiate the Benchmark procedure (procedure named Benchmark) from the PolynomiaL

Benchmark package. Pass in a function subprogram as a generic actual parameter. This is

the subprogram to be benchmarked. Pass in an identity function from the Benchmarking.

Tools package as another generic actual parameter. This subprogram helps to compensate

for lime costs associated with the design of the benchmark driver software. A new

Benchmark procedure instantiation is required for each subprogram benchmark from the

Polynomials package.

6. Request the system information. This includes the name of the compiler used to compile

the benchmark and the names of the host and target machines of the compiler. This data is

incorporated into the benchmark driver output to note the environment in which the

benchmark is being carried out. See "Benchmark Correct Outputs" below.

7. Request the number of iterations to use for each benchmark. Separate numbers are re-

quested: one for the number of iterations to use when timing the benchmark, the other for

(lie iterations to use when collecting data from the benchmark.

8. Call the instantiated Benchmark procedures. These procedures time the benchmark sub-

program over a selected domain. They also provide input and output data echoing for the

benchmark subprogram over the argument domain.

9. End of benchmark definition.

Benchmark inputs: System information and iteration values are supplied at run-time via the con-

sole.

IX

• Benchmark correct outputs: The benchmarks produce time-consumption data as well as: echoed

system information (noted above), an Ada enumeration literal for the function being benchmarked

(e.g. SINE_R for radian sine), and ordered pairs of benchmark subprogram input and output. Ac-

curacy of the subprogram output is determined by an analysis program supplied with the

Benchmark Suite. This program uses the VAX Ada Math library (MATH_L1B) to obtain truth

values. Absolute error in a benchmark subprogram is calculated as the difference between the result

of that subprogram and the truth value result for a given argument.2

• Data to be recorded:

1. Execution time for one call to each Ada subprogram benchmark

2. Code size

3. Arguments and benchmark function results for those arguments

4. System information collected at the beginning of the run

• Methods for recording data: Time-consumption data is recorded and reported automatically by the

benchmark drivers. Input data, output data, system information echoing, and an enumeration literal

representing the kind of function benchmarked are also reported automatically. Analyzed output is

obtained by passing the benchmark driver output through the analysis program Analyze. Code size

information is retrieved from linker maps.

TABLE 7. DETAIL OF COSINE PERFORMANCE BENCHMARKS

Number
of

Term*
Taylor
Series

Modified
Taylor
Series

Hastings
Algorithm

Hart
Algorithm

System
MHKttOW

4

3

6

7

X

X

X

X

X

X

X

X

X

X X

I X X

VAX X

2Note: a small amount of error is induced by conversion lo and from text representations of floating-point number*.

19

TABLE 8. DETAIL OF TANGENT PERFORMANCE BENCHMARKS

Number
of

Terms
Tsylor
Series

Modified
Taylor
Series

Mailings
Algorithm

Continued
Fraction

System
Function*

4

5

6

7

X X X
■ -

— —
X

X

X

X X

X

X

1
9

10

II

VAX

X X X

X

X

X

X

TABLE 9. DETAIL OF ARCSINE PERFORMANCE BENCHMARKS

Number
of

Terms
Tiylor
Series

Fike
Semicircle

System
Function*

5 X

6 X X

7 X

1 X

VAX X

TABLE 10. DETAIL OF ARCCOSINE PERFORMANCE BENCHMARKS

Number
of

Terms

3

6

7

a

VAX

Tsylor
Series

X

X

X

X

Fike
Semicircle

System
Functions

X

X

20

TABLE 11. DETAIL OF ARCTANGENT PERFORMANCE BENCHMARKS

Number
of

Terms
Taylor
Series

Alternate
Taylor
Series

Hastings
Algorithm

Modified
Hastings

Algorithm
Continued
Friction

System
Fanctions

4

5

6

7

«

9

10

It

VAX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

TABLE 12. DETAIL OF SQUARE ROOT PERFORMANCE
BENCHMARKING

Number
of

Terms

4

Newton-
Raphson

Modified
Newton-
Ksphson

System
Functions

5

6

7

VAX

X X

X

21

SECTION IV

METHODOLOGY

The following paragraphs explain methods used in constructing the Armonics Benchmark Suite.

These sections discuss the overall design aspects of the suite as applied to the problems of portability,

validity, and automation of data collection.

I. PORTABILITY

Like die CAMP parts in general, the Benchmark Suite is highly portable, extending its usability and

repeatability to many different Ada systems. The CAMP parts selected as benchmarks use only Mil-

Std-1815A Ada code, as do the drivers which automate much of the benchmarking. Whenever optional

Ada features are applied (e.g., pragma PAGE), their effects are irrelevant and they may be freely ignored

by Ada compilers.

Input to and output from the benchmarks is limited to die use of the console, obviating file I/O

implementation in the target system. While a filing system is desirable in order to retain output, the

console I/O approach possesses greater versatility since many embedded computers (and hosted

debugger/simulators for the same) may not fully support file I/O. In such cases, the use of file I/O could

taake the benchmarks difficult to transport to the kinds of architectures for which they are intended.

Moreover, the use of console I/O does little to impede the retention of benchmark data on a filing system.

The Ada language and most operating systems supply trivial mechanisms for redirecting console output

to files.

The tool set which accompanies the benchmark suite is system-dependent and, as previously noted,

consists of VAX DCL command procedures and some non-portable Ada. Designed to automate the com-

pilation and execution of the benchmarks, this tool set supports two possible uses: For VAX/VMS users,

the tool set substantially automates benchmarking; for users of other systems, the tools are well

documented to permit a knowledgeable user to modify diem or use them as a guide for performing the

benchmarks on his own system. A more detailed treatment of the tools is presented in Section V.

In order to automate the timing of benchmark executions in a portable way, the benchmark drivers

use facilities from the Ada CALENDAR package. Although differences in the implementation of this
package may exist between systems, these differences are minor enough that their effects can be min-

imized. The design of the benchmark drivers attempts to lake advantage of similarities in Ada systems

supporting the CALENDAR package, while accounting for the differences that exist.

22

For example, the duration of a basic clock cycle (Ada SYSTEM.TICK) may vary from system to

system and may be quite large with respect to the benchmark execution times. This requires a benchmark

driver to execute its benchmark many times in order to arrive at a reasonable one-call execution-time

estimate. By examining the Ada constant SYSTEM.TICK, the drivers are able to calculate the number of

benchmark executions necessary to arrive at a set timing accuracy. Conversely, given the number of

executions used in benchmarking, the drivers calculate an estimated accuracy on the time-consumption

data obtained from those executions.

2. COMPILATION BENCHMARK METHODS

The compilation benchmarks are valid tests of a compiler but do not apply to code generation. They

are intended to force an Ada compiler/linker system to fail when it contains errors in semantic analysis, in

library management, or in linkage editing.

To pass the compilation benchmark test, a compiler must process the associated Ada source code

without signaling any errors or ending abnormally. Limited warnings are allowed since the Ada language

allows a compiler some flexibility. For example, a compiler can warn that it has made an optimization or

ignored an optional pragma. Warnings about program semantics, however, should not be generated, nor
should the compiler or linker encounter fatal errors in library management or load module generation.

The compilation benchmarks are performed by a DCL command procedure. This procedure must be

supplied with a compiler invocation command and a linker invocation command. It then proceeds to

apply these commands to the necessary Ada source files in a correct order. The procedure can be altered

or used as a guide when benchmarking on systems other than VAX/VMS.

The compilation benchmarks were validated by successfully compiling, linking, and running their

source code on a higldy reliable Ada compiler/linker system. The system on which the validation was

performed is ACVC validated and produced no error messages or warnings in the course of compiling,

linking, and running the compilation benchmark source code.

3. EXECUTION BENCHMARK METHODS

a. Collecting Valid Timing Data

Drivers of the execution benchmarks collect time-consumption data through the use of the Ada

CALENDAR package. As noted above, the Ada constant SYSTEM.TICK varies between systems and is

usually quite large. Because of this the benchmarks are called repeatedly for the sake of timing accuracy.

The number of repetitions necessary to achieve microsecond accuracy is computed relative to

SYSTEM.TICK and reported by the benchmark drivers at run-time. This enables a user of the

Benchmark Suite to decide on the number of repetitions to actually use in benchmarking.

The computed number of repetitions is not used automatically since the resulting processing

time of the benchmark drivers might, in some cases, become prohibitively long. Large numbers of

repetitions on slow systems may consume a substantial amount of CPU time. Reducing the number of

repetitions proportionally reduces both the driver CPU-lime expense and, unfortunately, the accuracy of

23

the collected benchmark timings. The engineer who runs the benchmarks must, therefore, make a trade-

off with respect to timing accuracy and the use (or overuse) of computational resources.

In order to ensure valid timings of the benchmarks, a number of precautions are built into the
system. Code optimizations which might affect the integrity of the time-consumption data are selectively

defeated while other optimizations remain untouched. The methods used are similar to those used in

ACVC tests to prevent the compile Jme removal of code which is being tested. These methods entail the

use of identity functions and tautological BOOLEAN functions to deprive the compiler of optimization
opportunities. Here, the goal of optimization suppression is essentially to "fool" the compiler by reducing

its available control-flow information at compile time.

For example, consider Figure 4. The identity function used in the first part of this Ada fragment

prevents a compiler from propagating the constant "5" into the timing loop in place of the variable

Argument. If this propagation were allowed to occur, the measured lime for the subprogram call could be

reduced. The reduction, however would be due to the static nature of the argument, a circumstance which

would not often occur if the subprogram were used in an application. This method of optimization

suppression is used in the integrated execution benchmarks where constants are often supplied as ar-

guments.

m Xdmtitr(S); — lnatMd of -*i p—it :- 5;
8t«rt_TlJMr;
Cor Indue in Soa*_Rang« loop

Raault :- B«nch»ark_runctlon (ArgoHBt) ;
•ad loop;
3top_Tla»r;

Figure 4. Identity Function Defeats Constant Propagation

In a second example. Figure 5 shows the use of a tautological BOOLEAN function to prevent

the removal of a "dead" assignment. The function, Snow_Is_White, always returns the value TRUE,

although this is not known at compile time by the compiler (the body of the function is separate). Since

the flow of control is not known, the compiler cannot remove the assignment to the variable Gross_Time.

If this optimization were allowed, the compiler could move the evaluation of the Get_Elapsed_Time_

Since_Start function into the expression assigned to the variable Next_Time_Used. While such a move

would not alter the logical meaning of the program, a small effect on the time data would result. This

optimization suppression is used in the polynomial benchmarks.

It should be noted that these techniques <lo not have the negative effect of inhibiting desired

optimizations. An Ada compiler is free to optimize all unprotected source code, including the code

bodies of the benchmarks themselves. It should also he noted, however, that these techniques arc not

fool-proof. Conceivably, a smart enough compiler/linker could outwit the optimization suppressions

described here.

24

»tart_Timar;
for Indajc In So«M_R*ng* loop

■ rgi—ant :- Identity (Argument),
•nd loop;
If Snowl. Hhlt* than

Or«rh«*d_Tl»» :- Oat_Elapaad_Ti»a_Sinaa_Start
•nd If;

loop d«t»n*in»» o»«rh»id

— b»l*nc»» "if" b.lo».

for Indox In Son»_It»ng« loop
>lf l»t :- Identity (llfiawnt) ;
•aault :- Bannhaark_l*nnotIon (Argumnt);

•nd loop,
if 3now_Ia_l»hitn than

SroaaTlaa :- Gat_Elapaad_Tl»a_Sinca_Staxt;
•nd if ;
■at Tin— Oaad :- Groaa Tlaa - Ovarhaad Tiaa;

— function alwaya TROT
— raaoral prarantad

Figure 5. Tautological Function Prevents Assignment Removal

Figure 5 also illustrates the collection of time-overhead to calibrate benchmark timings. Time

overheads are calculated at run-time and are used to offset the effects of the timing method and

benchmark code idiosyncracies. In the case of the polynomial benchmarks, the overheads are often

negligible, since none of these benchmarks require initialization.

On the other hand, the execution time overheads of the integrated execution benchmarks are

usually appreciable due to the parameter requirements of the benchmark subprograms. Many of the

higher-order CAMP parts used as integrated execution benchmarks have side effects and in-out

parameters. Each execution of such a benchmark, therefore, has a cumulative effect which may produce

an exception after many iterations. In order to counteract this effect, many of the integrated execution

benchmarks must be re-initialized prior to each call, a process which adds very significantly to overhead.

The resolution of this problem is transparent to the user and is accomplished by, as in the polynomial

benchmarks, implementing automatic overhead correction in the benchmark drivers.

Despite all of the precautions taken to ensure the validity of the time-consumption data, in-

accuracies may still occur. The benchmark drivers may overestimate benchmark execution times when

asynchronous events take place in the midst of timing. For example, if the benchmark drivers are

operated on a lime-sharing operating system, Ihey will compete with other processes. Since the CALEN-

DAR package operates on wall-clock time rather than CPU time consumption, the benchmarks will ap-

pear to execute longer as their CPU time fraction is reduced.

25

Problems of this kind are beyond the control of the benchmark drivers. The effects of
asynchronous events on the benchmark timings may be minimized, but inaccuracies should nevertheless

6e assumed: When asynchronous interference with the benchmarks is relatively uniform, the benchmark

execution times wil< lengthen proportionally to their synchronous execution times. Benchmarks which, by

themselves, take a relatively long time to run will, of course, show a relatively larger dilation in measured

execution time. While this effect may be undesirable, it can usually be taken into account.

Moreover, timings which include asynchronous interference, typical of an operating environ-

ment, are quite valid. In such an environment, estimates based on the CPU time consumption alone

would be unrealistically low. The true throughput of an application is a function of both the application

execution speed and the typical amount of asynchronous interference with which the application must

contend.

b. Collecting Benchmark Output Data

In addition to timing data, the polynomial benchmarks provide data for use in determining the

accuracy of Polynomials (CAMP package) function results. For each function benchmarked, both input

and output are reported at equal intervals over a selected argument domain. This permits the result ac-
curacies of the functions to be checked against appropriate truth values. For users with access to VAX

Ada, accuracy analysis and report generation can be accomplished automatically using a tool provided

with the Benchmark Suite. Other users may make use of this tool by modifying it as explained in section

V. It should be noted, however, that the accuracy analysis tool is not required in order to run the

benchmarks.

Armonics subsystem output data is also produced by the integrated execution benchmarks al-

though automatic checking of this data is not supported. Most of the output from these benchmarks is

produced in an ad hoc format which does not lend itself to automatic analysis. Nevertheless, the correct-

ness of the data may be checked by manual comparison with standard output files supplied with the

Benchmark Suite.

c. Automation of the Execution Benchmarks

The compilation and implementation of the execution benchmarks is highly automated in the

Armonics Benchmark Suite. Depending on the computer system used, most of the benchmarking, from

installation to report generation, may be accomplished in one or two man-days. In addition, once an

engineer has conformed the Benchmark Suite to run on n particular system, the work can be easily

repeated as necessary.

Compilation of the source code of the execution benchmarks is explained in detail in the next

section. The process involves the use of VAX/VMS command procedures as discussed above for the

compilation benchmarks. Once again, these command procedures may be used directly on a VAX,

modified on systems which support batch processing, or used as a guide on other systems.

The process of running the benchmarks is automated at two levels. First, the benchmarks them-

selves (i.e. the chosen CAMP parts) are automatically executed by the portable Ada drivers in which they

26

are embedded. Thus, the engineer with the task of benchmarking is not required to supply an Ada driver

with which to execute the benchmarks. Second, at a higher level, the benchmark drivers are executed

using VAX DCL command procedures, written for inclusion with the Benchmark Suite. This level of

automation is, of course, subject to system dependencies.

27

SECTION V

USING THE BENCHMARKS

The following sections explain how to perform benchmarking using the CAMP Armonics

Benchmark Suite. For the purposes of discussion, the VAX/VMS environment is assumed. Comments

throughout suggest possible ways of adapting the Benchmark Suite to other environments.

Table 13 lists the DCL command procedure files which are supplied with the Benchmark Suite. On

a VAX, these command procedures automate both the compilation and the execution of the benchmark

drivers. On other systems the command procedures serve as a guide although they may be altered as

necessary to conform to other batch-processing systems.

1. LOGICAL DIRECTORIES

A system of three directories is recommended for compiling and executing the benchmark code in a

VAX/VMS environment. These directories are referred to within the Benchmark Suite command

procedures by the following VMS logical names:

• Compilation_Directory: The directory on which all compilation takes place.

• Tools: The directory which contains the Benchmark Suite command procedures, and

• Source: The directory which contains all of the Ada source code supplied with the benchmarks.

On systems which do not support the concept of logical names, the command procedures may be

altered to use the desired operating system names and batch job control style. Systems which do not

support the concept of directories at all may store all of the files (over 360 in number) in a single location

and alter the command procedures accordingly.

2. USINO THE COMPILATION BENCHMARKS

The compilation benchmarks are simply files of Ada source code. Testing a compiler/linker system

with the benchmarks involves compiling the Ada code in a correct order and then linking the three

linkable main procedures. For VAX/VMS-hosted Ada compilers the process is automatic depending

slightly on the command syntax used to invoke the subject Ada compiler and linker.

The file called VAX_Compilation_Run.Com gives an example of how to perform the compilation

and linkage editing of the compilation benchmarks on VAX/VMS, using the VAX Ada compiler and (via

ACS) the VMS linker. The procedure sets its process to run in the logical CompiIation_Directory and
then calls the command procedure Compilation_Bcnchmarks to perform the compilation and the linkage

editing. On other systems, the Compilation_Bcnchmarks procedure gives a correct compilation order for

the Ada source files and may be used as a guide or altered as necessary.

28

TABLE 13. BENCHMARK SUITE COMMAND PROCEDURES

COMMAND PROCEDURE PURPOSE

ACI.COMPILAl ION_RUN Calk Compilalinn_BciK.hmarka lo compile/link Ihe compilation benchmarks on the ACT
compiler.

ANSI2DV A DV2ANSI Rename files from ANSI lo development names and reverse.

COMPILATION_BENCHMARKS Compiles/links source code for the compilation benchmarks.

COMPILE_BENCHMARK_SUPPORT Compiles support code for the execution benchmarks.

COMP1LE_TOOLS Compiles the clock function and I/O tools of the execution benchmarks.

INT.EXEC l_COM_LINK Compiles/links Ada source code for integrated execution 1

INT_EXEC2_COM_LINK Compiles/links Ada source code for integrated execution 2

INT_EXEC.1_COM_!.INK Compiles/links Ada source code for integrated execution 3

MODIFIED_POLY6_COM_!.INK Compiles/links Ihe 6-digii precision polynomial benchmarks on the TLD compiler.

MODlFIED_POLY9_CX>M_LlNK Compiles/links the 9-digit precision polynomial benchmarks on the TLD compiler.

POLYo_COM_LINK Compiles/links the 6-digil precision polynomial benchmarks.

POLY9_COM_MNK Compiles/links the ')-digit precision polynomial benchmarks.

SYSTEM_COM_LINK Compiles/links code to run the System polynomial benchmark.

TLD_BENCHMARKS_COM_UNK Calls other procedures to compile/link the benchmarks on the TLD compiler.

TLD_CT)MPILATK)N_RtJN Calls Compilation_Benchmarks to compile/link the compilation benchmarks on Ihe TLD
compiler

VAX_ANALYZE_COM_LINK Compiles/links the Analyze Ada program. The program js VAX/VMS and VAX Ada
dependent.

VAX_ANALYZE_POLY Uses Analyze Ada to analyze all of the output from the polynomial benchmarks

VAX_BENCHMARKS_COM_LrNK Calls other procedures to compile/link Ihe benchmarks on the VAX Ada compiler.

VAX_COMPlLAT!ON_RUN Calls Compilalion_Benchmarks to compile/link the compilation benchmarks on the VAX
Ada compiler.

VAX_INT_EXF.C1_RUN Runs integrated execution 1 on the VAX.

VAX_INT_EXEC2_RUN Runs integrated execution 2 on the VAX.

VAX_INT_EXEC3_RUN Runs integrated execution 3 on the VAX.

VAX_POLY_Rl»N | Runs Ihe polynomial benchmarks on the VAX.

29

X COMPILING THE POLYNOMIAL AND INTEGRATED EXECUTION
BENCHMARKS

The two classes of executable benchmarks in the Armonics Benchmark Suite must be compiled and
linked prior to benchmarking. On VAX/VMS, this process is automatic and is accomplished by the
VAX_Benchmarks_Com Link command procedure provided with the Benchmark Suite. This command
procedure establishes a process in the logical Compilation_Directory and then proceeds to call other
Benchmark Suite command procedures to accomplish the various compilation and linkage editing tasks.
The following command procedures are performed in order:

l.Compile_Benchmark_Support: compiles the CAMP and 11th Missile software used in

benchmarking. This software contains the actual benchmarks (i.e., the CAMP parts selected as

benchmarks) as well as necessary support code. After compilation, this software comprises a

library of Ada units which provide a context for the subsequent compilation of the benchmark

drivers.

2. CompileJTools: compiles packages of benchmarking tools used by the drivers. These packages

are fully portable and provide the drivers with necessary I/O routines and other utilities.

3. VAX_Analyze_Com_Link: compiles and links the tool, Analyze, used to analyze the output of

the polynomial benchmarks. This tool is dependent on VMS and VAX Ada as explained in

Section III. The Benchmark Suite program library dependency of this tool is limited to the pack-

age Benchmarking_Tools, compiled by the procedure, CompileJTools, just discussed. This means

that the analysis tool may be independently compiled on VAX/VMS and VAX Ada and then used

to check the polynomial benchmark output from other systems.

4. Poly6_Com_Link and Poly9 Com, Link: compile and link the polynomial benchmark drivers.

Two command procedures are used: one for the drivers using 6-digit Ada floating point numbers,

and one for the drivers using 9-digit numbers. Thus, Ada systems which do not support the

extended floating-point representations may still compile the lower-accuracy drivers without dif-

ficulty. It should be noted, however, that the Ada source code files of Poly9_Com_Link will not

correctly compile unless those of Poly6_Com_Link have already been compiled. Two packages

necessary to the polynomial benchmark drivers of both precisions are compiled in Poly6_Com_

Link.

5. Inl_Execl_Com_Link, lnt_Exec2_Com_Link. and lni_Exec3_Com_Link: compile and link the

integrated execution benchmarks. Each of these command procedures compiles the support and

drivers necessary to run the respective integrated execution benchmarks.

30

6. Systcm_Com Link: recompiles CAMP Polynomials support on Hie VAX then compiles and links

the System Driver benchmarks. This driver uses the VAX Ada math library as a set of

benchmarks. The Polynomials Syslem_Functions LLCSC interfaces this driver to the math

library. This can be of interest to users of VAX/VMS and VAX Ada who must use the VAX Ada

"slide rule" functions, but who have to meet real-time constraints.

4. RUNNING THE EXECUTION BENCHMARKS

a. Polynomial Benchmark Execution

Once compiled and linked, the polynomial benchmark drivers may be run to produce data. As

has been discussed, these drivers send output to standard output which is generally the console. On most

systems supporting file I/O, including VMS, the standard output can be redirected to files.

The command procedure V AX_Poly Run is an example of running the polynomial benchmarks

in the VMS environment. Standard input is redefined to permit the drivers to request their input from a

file. This file, created automatically by VAX_Poly_Run at benchmark time, contains data to supply the

benchmark drivers with the following:

• Compiler Name: the name of the compiler used to compile the polynomial drivers (becomes part of

the output data).

• Host Name: the name of the compiler host machine (becomes part of the output data).

• Target Name: the name of the target machine of the compiler and the machine on which the

benchmarks will run (becomes part of the output data).

• Number of timing iterations: the number of times that a driver must call a function in order to

achieve a certain accuracy in calculating the lime for a single call.

• Number of data iterations: the number of data values to use as arguments to a function of the

driver. This defines the number of argument-result pairs produced as output for each benchmark of

the driver.

Standard output, like standard input, is also redefined in the case of each benchmark driver to

channel output to files. This permits the subsequent analysis of the output by the analysis program

Analyze.

The analysis program is not portable from the VMS and VAX Ada environment due to use of

the VAX Math Lib. Thus, use of the program on other systems is prohibited unless modifications are

made. The program may. however, be modified by interfacing it to another math library, as long as the

output from new math library has greater than nine Ada digits of precision. This is necessary since the

math library is used by the analysis program lo check the results of the polynomial benchmarks, which

use up to nine digits of accuracy.

Running the analysis program is trivial and is demonstrated by the VAX_Analyze_Poly com-

31

procedure. A user simply executes the analysis program. Analyze, and provides it with the name of

a data file produced by running the polynomial benchmark drivers. The program prompts again to re-

quest the name of the file in which the analyzed output is to be placed. After the analysis of a file is

complete the program starts over, requesting the name of the next input file. If no file name is provided,

the program terminates.

It should be noted that, although the analysis program is non-portable, it may be used to analyze

polynomial benchmark data from diverse systems. A user with access to VAX/VMS and VAX Ada may

Me the analysts program exclusively on that system to check the benchmark output from many other

systems.

b. Integrated Execution Benchmarks

Running the integrated execution benchmarks is similar to running the polynomial benchmarks.
The command procedures VAX_Int_Execl_Run. VAX_lnt_Exec2_Run, and VAX_Inl_Exec3_Run

automatically execute the three integrated execution benchmark groups on VMS. These procedures

provide the input data required by die drivers while the output of the drivers is trapped in log files by

VMS.

Like the polynomial benchmark drivers, the integrated execution benchmark drivers use only

standard I/O. The input data required by each of the drivers is as follows:

• Compiler Name: the name of the compiler used to compile the polynomial drivers (becomes part of

the output data).

• Host Name: the name of the compiler host machine (becomes part of the output data).

• Target Name: the name of the target machine of the compiler and the machine on which the

benchmarks will run (becomes part of the output data).

• Numbers of Timing Iterations: a series of numbers telling the driver bow many times to execute

corresponding benchmarks. Unlike the polynomial benchmarks, the different integrated execution

benchmarks within a driver do not all have to be executed the same number of times. Also,

overhead liming iterations vary from benchmark to benchmark. The command procedures which

run the integrated execution benchmarks on VAX/VMS may be consulted for more details.

The output generated by running the integrated execution benchmarks consists of two types of

1. Result data, which represents the results of ihe calculations performed by the subprograms chosen

as benchmarks and.

2. A table of timing data showing the time used (or a single call (o each benchmark subprogram.

V2

Oulpul data of the first type is to be used in checking the correctness of the data processing of a
tested system. Such output should closely match the corresponding standard data supplied with the

Benchmark Suite. The second type of data represents the run-time efficiency of the tested system and is
expected to vary widely from system to system.

Although both kinds of data are produced with each run of an integrated execution benchmark

driver, the correctness of the two types is mutually exclusive in a given run. A run which provides

accurate run-time efficiency data is, by design, likely to produce poor data for correctness checking. The

reverse is also true. For this reason, each integrated execution benchmark must be run twice, once for

timing purposes and once to obtain data for comparison to supplied standard data.

When performing the timing run, the number of iterations for each benchmark subprogram

(specified by the user at run-time) must be high in order to compensate for the generally low accuracy of

the clock functions. Each subprogram will then be called many times, the time for one call being cal-

culated by simple division. To aid the user, each benchmark driver reports the number of iterations

necessary to obtain microsecond accuracy. Also, whatever number the user specifies, Hie resultant table
of timings will show estimates of the accuracy actually obtained.

On the other hand, performing the benchmark run for correctness of data processing requires

that the benchmark subprograms be executed only once. Thus, the user must specify that only one itera-

tion be used for each subprogram. More than one call to a given subprogram can alter the output data,

making any comparison to the standard invalid. This is due to the use of in-out parameters and occasional

side effects in the benchmark subprograms. Results, in these cases, tend to accumulate changes from call
to call as previously discussed.

33/34 (Blank)

APPENDIX A

ARMONICS BENCHMARK SUITE

This appendix presents a summary of (he data which CAMP obtained from the Armonics

Benchmark Suite. In some cases the data represents performance parameters of the selected CAMP parts

as they operate on a 32-bit minicomputer. However, when possible, data reflecting the operation of the

benchmarks in a Mil-Std-1750A microprocessor environment has been included.

The compilation benchmark data underscores some of the difficulties a software engineer may

experience when selecting or applying an Ada compiler. It was found that many validated Ada compilers

currently lack the ability to handle complex source code. The problem is essentially one of relative

reliability: Some Ada compilers seem to work all of the time; most Ada compilers seem to work some of
the time.

The polynomial benchmarks, which measure run-time parameters of Polynomials scientific

functions, were executed successfully in both the 32-bit minicomputer and 1750A microprocessor en-

vironments. This supplied us with data enabling us to draw some useful conclusions about the CAMP

parts, the Ada language, and the tested compiler/processor pairs. Finally, performance data from the
integrated execution benchmarks serves to validate these benchmarks. At the time of this writing these

benchmarks could not be run in any but the 32-bit environment due to errors in compilation to the 1750A
target machine.

I. COMPILATION BENCHMARK DATA

The compilation benchmarks were used to test four separate Ada Compiler/Linker systems. One

compiler. Compiler A, was self-targeted and served, because of its demonstrated reliability, as the valida-

tion compiler for (he benchmarks. The other three compilers, B, C, and D, were recently validated

cross-compilers to a 1750A target.

Compiler A succeeded in compiling all of the source code of the compilation benchmarks. It

produced no warnings and no errors. The accompanying linker subsequently produced load modules with

no difficulties. As a final step, the load modules were run on the host system to see if they would produce

run-time errors. On this host, no errors occurred although this implies no guarantees about other systems.

Compiler B succeeded in compiling all of the source code correctly except the driver of the Kalman

filter compilation benchmark, Compilation 3. Numerous warnings were issued in the course of compila-

tion. The vast majority of these warnings concerned optimizations which could have been made in the

Ada code but, for reasons of readability, were not. The compiler had performed an optimization that was

not made by the programmer at the source code level. The warnings produced by Compiler B were

justified with the exception of two concerning program semantics.

In compiling the Kalman filter driver. Compiler B evidently lost track of a necessary file. Object

code was still generated but it was probably erroneous. Nevertheless, all three drivers were successfully

linked, albeit with one warning. The linker of Compiler B produced the required load modules and did

35

not fail lo note thai Jie Kalman filter driver had compiled with errors. The load modules were next
loaded into the MDAC-Huntington Beach Mil-Std-1750A Simulator and their sizes were recorded.

Compiler C compiled all of the support packages of the compilation benchmarks but failed to com-
pile any of the three drivers. In all three cases, the compiler ended abnormally in a late phase of process-
ing. For this reason. Compiler C's linker could not be fairly tested.

Compiler D had been validated very recently and appeared to be having many of the problems
associated with any new compiler. It failed to compile even the support packages of the compilation
benchmarks. After successfully compiling the first three Ada files, the compiler falsely diagnosed the
fourth as having semantic errors. Continuing through the source code, the compiler found numerous
other "errors" in the error-free code.

A summary of the data collected on Compilers A, B, and C is presented in Table A-l. Insufficient
data was obtained from Compiler D to justify its inclusion in the (able. It should be noted that the object
code size data for Compiler A may be unrealistically small. Hie size mentioned in the table does not
include any run-time system services which may be required.

TABLE A-l. COMPILATION BENCHMARK DATA

COMPILER/
LINKER

A

B

C

SUCCESSFUL
COMPILE?

Yes

MM

SUCCESSFUL
LINK?

Yes

Yes

TOTAL CPU
TIME (sees.)

10:56.56

22:42.33

TOTAL OBJECT
CODE SEE

62K bytes

I22K bytes

No NA 3OO0.0O? 7

2. POLYNOMIAL BENCHMARK DATA

The polynomial benchmarks were used to test two subject systems. System A consisted of Compiler
A, above, and the host/target system of that compiler. System B consisted of Compiler B and the MDAC
Huntington Beach Mil-Sid-1750 A simulator, which simulates a 17S0A bare machine. Running the
benchmarks on System A produced performance data on the CAMP Polynomials package parts as they
run on a 32-bit time-sharing minicomputer. System B produced data for the same parts as they run on a
20 MHz 1750A microprocessor. Compilers C and D, above, failed to compile the polynomial
benchmarks.

For each function of the Polynomials package, size data was obtained on System B. It was felt that
17S0A size data was relevant to armonics applications. Moreover, this data was readily available in the
linkage map files produced by the linker of System B. On the other hand, size data on the 32-bit system
was less meaningful and was excluded. System A makes extensive use of built-in service routines which
are not counted in load size; on a bare machine, system services arc part of the load module or run-lime
system and are counted — a fact which casts douhf on (he validity of code size estimates. Table A-2 gives
the size data for functions of the Polynomials package on System B.

Time-consumption and mathematical precision data on the polynomial functions was collected for
both systems A and B. This data is summarized in Figures A-l to A-12. Each graph plots the execution

36

TABLE A-2. SYSTEM B POLYNOMIALS SIZES

TLCSC Nam TLCSC Naae TLCSC Name
ursc Naae Size (words) LLCSC Name Size (words) LLCSC Name Six* (words)

"nit Name Hex. Dec. Unit Naae Hex. Dec. Unit Naae Hex Dec.

Chebyshev Hod Newton Raphson Taylor Series Icont.)
Radian derations "Sgrt 61 97 Degree Operations

Sln_R_5Tera 5D 93 Newton Raphson Sin 6 5Tera 8 C 140
Degree Operations Sgrt 6C 101 Sln~D~STera 4 C 76

Sin D Herat 5D 93 Taylor Series Sln_D~7T»ra 5 0 80
Semicircle Operations RadlanOperat Ions Sln_D_8T»ra 9 4 84

Sin S 5tera 5A 90 Sin R 4Term 34 52 Coi~D~ST»ra 9 D 157
CodyWalte Sln_R_5Ter» 37 55 Cos_D~*T«ra 5 3 13

Natural Log SlnjC6Tera 3A 58 Coa~D~7T«ra 5 (16
Nat Log 59 89 Sln~R~7Term 3D 61 Coa~D~8T*ra 5 9 19

Base S sin R STera 40 64 Tan D Worm 1 « 54
Log N 12 18 Cos R 4Tera 4F 79 Mod Sin D 4Term 7 (lie

Continued Fractions Cos R 5Term 52 62 Hod Sin D 5T*ra 7 E 126
Radian Operations Cos R 6Tera 55 85 Mod Sin D 6T*ra 8 i 134

Tan f 31 49 Cos_R_7Tera 58 88 Hod Sin D 7T*ra 8 I 142
Arctan R 3« 54 Cos R 8Tera 5B 91 Hrxfsln D 8T«ra 9 « 150

FUe TanRSTera 2B 43 HCHfcoa 0' 4Tera 7 4 11<
Semicircle Operations Arcsln R 5Term 22 34 Hod~Cos_D~5T«ra 7 C 124

Arcsln S 4Term 60 96 Arcsln R 6Term 26 38 Hod~Coa~D~6T«ra 8 4 132
Arcsln S 5 Term 64 100 Arcsln R_7Term 2A 42 Hod CoaD" 7T«ra 8 C 140
Arcsln~S 6Tera 68 104 ArcslnR 8Tera 2E 46 Hod Cos~D~8T«ra 9 4 148
Arccos S 4Tera 62 98 ArcosiI 5"Term 29 41 Hod Tan D 4Tera 1 4 2f
ArccosS 5Tera 66 102 Arcos_R^6Term 2D 45 Hod'TanD 5Tera 1 4 20
ArccosS 6Tera 6A 106 Arcos R 7T»ra 31 49 Hod Tan~D~6Tera I 4 2D

Hart Arcos R~8Tera 35 53 Hod"T«n"D 7T*ra 1 4 20
Radian Operations Arctan R 4Term 31 49 Mod Tan D ITera 1 4 20 '

Cos R 5Term 52 82 Arctan R 5Term 35 53
Degree Operations Arctan R 6Tera 39 57

Cos D 5T»ra 51 81 Arctan R 7Tera 3D 61
Hastings Arctan R~8Term 41 65

Radian Operations Alt ArctanR 4Term IE 30
Sin R 4Teri» 36 54 Alt_Arctan_R_5TBra 22 34
Sin R 5Term 3A 58 Alt~Arctan R 6Tera 26 38
Cos R 4Term 3D 61 Alt_Arctan_R_7Ter» 2A 42
Cos R 5Term 41 65 Alt~Arctan R 8Tera 2E 46
Tan P 4Term 25 37 Hod Sin _R_4Term 68 107
Tan P 5Term 25 37 ModSlnR 5Term 73 115
ArctanP 6Term 26 38 Hod Sin R^Term 7B 123
Arctan R 7Tera 2A 42 Hod Sin R 7Term 83 131
Arctan R BTern 2E 46 Hod_Sln_R_8T*rm SB 139
Hod Arctan R 6Term 4C 76 Hod~Cos R 4Term 76 118
Hod Arctan R 7Term 50 80 Hod Cos R 5Tera 7E 126
Mod Arctan R 9Tera 54 84 Hod Cos R_6Term 86 134

Degree Operations Hod Cos R 7Term 8E 142
sin D 4 Term 36 54 Hod Cos R 8Tera 96 150
Sin DSTerm 3A 58 ModTan R_4Tera 14 20
CosD 4Tera 3D 61 Hod Tan_R~5Tera 14 20
Cos D~5Ter» 41 65 Hod Tan R_6Term 14 20
Tan D 4Tera 23 35 Hod Tan RJ7Tera 14 20
Tan D_5Term 23 35 HodJTan_R~8Term 14 20

time of a function against the absolute precision of that function's results. Both the time and precision

data are taken over the function argument domains listed at the bottom of each figure.

The domain specifications are of particular importance since a given function, apparently superior in

terms of performance, may nevertheless operate correctly only over a small domain. This is, for example,

true in the case of the radian arctangent benchmarks (Figures A-6 and A-12) where the "Alt Taylor"

method appears to be the best performer. However, referring to the domain specification, it becomes

apparent that the "Alt Taylor" method only provides the indicated performance over the domain (0.0,0.4|.

Other functions provide a more acceptable domain at a slightly higher throughput cost.

The absence of separate data for six and nine digit instantiations in the figures based on System B is

due to the fact that compiler B always uses 1750A extended precision (approximately 9 decimal digits) to

represent any generic floating-point object. Identical object code is used for each instantiation of a

37

r
floating-point subprogram and, indeed, compiler B shares one object code instruction section

among all instantiations of a given generic. The use of this "single copy" method implies that the running

times of different instantiations of the same generic subprogram will be identical, regardless of the preci-

sion of the floating-point variables. Thus, the nine-digit worst case data applies for both six and nine-
digit instantiations.

3. INTEGRATED EXECUTION BENCHMARK DATA

The integrated execution benchmarks, which integrate numerous CAMP parts, were run on the 32-

bit minicomputer (System A above. Tables A-3, A-4, and A-S).

Standard output data for these benchmarks is supplied in the form of files accompanying the

benchmark suite. This data can be used to verify that a compiler and target machine combination produce

correct output for the benchmarks. The data is not reproduced here because it is quite lengthy and is not

formatted for inclusion in a document.

Time-consumption data on the integrated execution benchmarks was automatically collected at run-

time by the benchmark drivers. This data is presented in Tables A-3, A-4, and A-5.

7 (Mod Taylor)

Execution
Tlmo (ya.)

I I I I I
3456789 10

Minimum Olglt* of Accuracy

Execution
Tim* (y».)

3456789 10

Minimum Digit* of Accuracy

of Mnnt u**d In
the polynomial axpanalon. Tha function domain ovar

I* t-pW, pl/2].

Figure A-l. Radian Sine on System A

Numb+fai shown WK»C#W th# nurnbtv ol t#nn# UWMKJ In
tha polynomial axpanalon. Tha function do—In ovar

l Ma data apptaa U [0. pi).

Figure A-2. Radian Cosine on System A

350-

300- f 7 Mod Taylor

250-
Haallng* //

r PII

200- - j/ i1! 4 «^*i >•

150 _
Taylor / Continued

100 _ - J«m|j • digit* 6

■ digit* •

Execution 1 1 1 1 1 1 1 1
Tfena (ya.)

3456789 10

Minimum Digit* of Accuracy

Numbara attorni Indicate tha numbar of tarma uaad m
th* polynomial axpanalon. The function domain ovar
vmteh tM* data eppHee la (-1, f).

Figure A-3. Radian Tangent on System A

F*a 2

6(FH<* 1k2)

Taylor

• digit. •

■ digit* •

ExacuHon
Tim* (ya.)

I I I I I I I I
3456789 10

Minimum Otgtt* of Accuracy

of mm* uaad In
tha polynomial axpanalon. Tha function domama ovar

Taylor Radian: (444, 0.44)
Rka t Samlclrcla: [-0.8, 0*1
FRta 2 Samlclrcla: [-1.0. 1.0]

Whara Flka 1 uee* th* Matrlon llaphaon *qu*r* root and
F*e 2 UHI th* ModMed Niton llaphaon equare root.

Figure A-4. Arcsine on System A

39

Taylor

• digit* 6

■ dlglti •

Time (ye) I I I I I I I I
34 56789 10

Minimum Digits of Accuracy

Number* •town Meat* tto number of term* uaad In
the polynomial expansion, Tto function domain* over

Taylor RadtaK [-0.46, 0.46)
mo 1 Semicircle: [-0.6. 0.6]
FHa 2 Semicircle: [-1.0, 1.0]

ka 1 uaaa tto Newton flaptoon
nka 2 uaaa tto Mod ted Nanton-flaptoon aquara root.

Figure A-5. Arccosine on System A

300^ 10B

250-
90 Continued

200- if

150-
jT Mod Hailing*

100- -v •/Jl^xr*
%d/pX*l ** 1"*or

50 _
a digit* t

Execution
Tbna (ye.) 1 1 1 1 1 1 1 1

34 56789 10

Minimum Digit* ol Accuracy

Hufnbvrv MWfMI IndloK* thk> nun*to*>f of ttnno u**d In
tht polynomial oxponolon. Tht function domomo ovor

Taylor: [2.63, W.0J
Alt Taylor:
Haallnga:

[0.0, 0.4]
HA ii)

Mod Haallnga: [0.0, 60-0)
Continued Fraction: [0.0, 0.7167]

Figure A-6. Radian Arctangent on System A

440-
5 ■ Ctobyatov

400-

360-

320-
1
1
[•0)
'•(MT)

170)

280-

240-

Taytor
Si

a.

Halting

I7(MT)

,6
Mod Taylor

a

4 , 1 ** ■ 4

Time (ya.)

34 56789 10

Minimum Dlglta ol Accuracy

440

400

360

320

280

240

Execution
Tkna (ya.)

(MT)

I I I I I I I I
3456789 10

Minimum Dlglta of Accuracy

Number* ahown Indicate the number of term* uaad In
a polynomial expansion. The function domain over
vtch mm data applies la l-pl/2, pl/2].

Figure A-7. Radian Sine on System B

Number* ahown Indicate the number of term* uaad rrt
the polynomial axpanalon. The function domain over
which tMa data appllee la [0, pi].

Figure A-8. Radian Cosine on System B

40

11 (CF)

•(MT)
10 (CF)
7(MT)
9 (CF), 6 (MT)

34 56789 10

Minimum Digits of Accuracy

Number* shown Indicate the number ol term* used In
MM polynomial expansion. Tha function domain over
which Vila data appHa* la (-1, 1]

Figure A-9. Radian Tangent on System B

600-
Flh* 1 a

500-

400- 4 Flk* 2

300-

200- S ^,

-8

100 Z
Taylor

Execution
Time (u».)

34 56789 10

Minimum Digit* of Accuracy

Number* thown Indlcvte the number of term* used In
tie polynomial expenelon. The funcfon domain* over
which thee* data apply are a* follow*:

Taylor Rsdton: (-0.44, 044)
Fits 1 Semicircle: (-0.6, 0.9)
Flat 2 Semicircle: [-1.0, 1.0]

Where Ffke 1 uaea tie Newlon-rwphaon aquare root and
Fats 2 usss via Modified Nevrtoivriaphaoti equate roof.

Figure A-10. Arcsine on System B

600

500

400

300

200

100

Execution
Time (ye.)

Fke 1

Ffke 2

Taylor

I I I I I I I I
3456789 10

Minimum Digit* of Accuracy

1200--

1000-

800

600-

Continued

JZ

Execution
Time (ye.)

34 56789 10

Minimum Digit* of Accuracy

Number* shown Indicate the number ol term* u**d In
the polynomial expeneton. The function domain* over
which thee* date eppfy ere ee follow*:

Teytor Radmn: (4.48, 0.4s]
FBt* 1 Semicircle: [-0.9, 0.6]
Flk* 2 Semicircle: (-1.0, 1.0]

Where Ffke 1 ueee the N*wton-Raph*on aquare root *nd
Flke 2 ueee the Modified fwjwton-Repheon aquare root.

Figure A-11. Arccosine on System B

Number* ehown mcHcet* th* number of terme u*ed In
the polynomial expansion. The function domain* over
which th*** data apply are ea follow*:

Taylor: (2.43, S0.0)
Alt Taylor: [0.0, 0.4)
Haatlnga: [-1.0, 1.0]
Mod H**tlng.: (0.0, 80.0)
Continued Fraction: [0.0, 0.7107)

Figure A-12. Radian Arctangent on System B

41

TABLE A-3. TIMING OF INTEGRATED EXECUTION 1

Integrated Execution 1 on VAX

TLCSC Name (some names abbreviated)
LLCSC Name

Unit Name

Time (microsecs)

Per Call Variation

Waypoint Steering (P661)
Compute_Turn_Angle_And_Direction
Compute Turning And Nonturning Dist
Distance To_Current_Waypoint

Steering Vector Operations W Arcsin
Initialize
Update

Turn_Test_Operations
Stop_Test
Start_Test

Signal_Processing (P686)
Absolute Limiter

Limit

Opper_Lower_Limiter
Opdate_Limits
Limits

391.0
173.0
409.0

5210.0
2623.0

62.0
61.0

43.0

15.0
57.0

0
0
0

5
10

2
0

0

0
0

42

TABLE A-4. TIMING OF INTEGRATED EXECUTION 2

Integrated Execution 2 on VAX

TLCSC Name (some names abbreviated)
LLCSC Name

Time (microsecs)

Unit Name Per Call Variation

Common Navigation_Parts (P001)
Update Velocity

Reinitialize 34.0 2
Current Velocity 51.0 2
Update

Compute Ground Velocity 509.0 2
Compute Gravitational Accel Sin Lat In 332.0 2

Wander Azimuth Navigation Parts (P002)
Earth Rotation_Rate

Compute 338.0 2
Earth Relative Navigation Rotat Rates

Compute 414.0 0
Total Platform Rotation Rate 151.0 0
Compute Latitude Using Two Val_Arctan 623.0 0
Compute Longitude Using Two Val_Arctan 430.0 0
Compute East_Velocity With Sin_Cos 231.0 2
Compute North_Velocity With Sin_Cos 232.0 2
Compute Coriolis Acceleration 769.0 2
Compute Wand Azim Angle Two Val Arctan 432.0 0
Compute Curvatures 820.0 0

Direction Cosine Matrix {P644)
CNE Operations

Compute First Row CNE From Ortho 199.0 0
CNE Initialized From Reference 1647.0 2
Perform_Rect Integration_Of_CNE 664.0 0
Reorthonormalize CNE 1698.0 2
Aligned CNE Matrix 1178.0 2

General_Vector_Matrix_Algebra (P682)
Matrix Matrix Multiply Restricted 3861.0 0

General Purpose_Math_Parts (P687)
Accumulator

Accumulate 19.0 2

43

TABLE A-5. TIMING OF INTEGRATED EXECUTION 3

Integrated Execution 3 on VAX

TLCSC Name (some names abbreviated) Time (microsecs)
LLCSC Name

Dnit Name Per Call Variation

Kalman Filter Common Parts (P651)
State Transition And Proc_Noise_Mat_Mgr

Initialize 1603.0 1
Propagate 187290.0 10
Get Current 113.0 1
Propagated_Phi 119.0 1

Error Covariance Matrix Manager
Initialize 69.0 1
Propagate 149540.0 10
P 119.0 1

State_Transition_Matrix_Manager
Initialize 1547.0 1
Propagated Phi 117.0 1
Propagate 28073.0 10

Kalman Filter Compact H Parts (P652)
Compute Kalman Gains 10978.0 2
Update Error Covariance Matrix 16267.0 2
Update State Vector 6360.0 2
Seq_Update Cov Matrix And State Vector

Update 67897.0 2
Kalman Update

Update 233355.0 2
Update_Error_Cov_Matrix_General Form 73222.0 2

Kalman Filter_Complicated H Parts (P653)
Compute Kalman Gains 24687.0 1
Update Error Covariance Matrix 60033.0 2
Update_State_Vector 12756.0 1
Seq_Update Cov Matrix And State Vector

Update 192150.0 10
Kalman Update

Update 361139.0 10
Update Error Cov Matrix General Form

1

215098.0 10

44

APPENDIX B

ADA SOURCE CODE INVENTORY

The following tables comprise an inventory of all Ada source code used in the CAMP Armonics

Benchmark Suite. In addition, the tables provide a cross-reference from the development name of a file

to the ANSI name assigned to that file for transportation to other operating systems.

45

TABLE B-l. ADA SOURCE CODE INVENTORY

(1 of 10)

Armonics Benchmaifc Inventory and Cro»s-Reference

Development Name ANSI Name

CAMP Source Code

00 l_000_COMMON_NA V_.ADA

00l_00l_COMMON_NAV.ADA

001_ IOO_ALTiTUDE_INTEaRATION.ADA

00 l_200_COMP_GROUND_VEL.ADA

00 l_300_COMP_aRAV_ACCEL_LATJN.ADA

00l_400_OOMP_aRAV_ACCEL_SIN_LAT_IN.ADA

A00IOOO.ADA

AOOIOOI.ADA

A00II0O.ADA

A00I200.ADA

AOO 1300. ADA

AOO 1400. ADA

00 l_500_COMP_HEADING.ADA

00 l_600_UPDATE_VELOCITY.ADA

00 l_700_SCALAR_VELOCiTY.ADA

00 l_800_COMP_ROTATION_INCR. ADA

A00IS00.ADA

AOO 1600. ADA

AOOI700.ADA

AOO 1800. ADA

002_000_WA_NAV_.ADA A002000.ADA

002_OOI_WA_NAV.ADA

002_l00_EAST_VELOCITY.ADA

002_200_NORTH_VELOCTTY.ADA

002_300_EARTH_REL_HOR_VELS.ADA

002_400_TOTAL_ANOUL.AR_VEL.ADA

002_500_CORJOLIS_ACCEL.ADA

A00200I.ADA

A002I00.ADA

A002200.ADA

A002300.ADA

AQ02400.ADA

A002S00.ADA

002_600_CORIOLIS_ACCEL_TOT_RATES.ADA A002600.ADA

002_700_RAD_OF_CURV.ADA

002_800_TOT_PLATPORM_ROT_RATE.ADA

002_900_EARTH_ROT_RATE.ADA

AOO270O.ADA

A002800.ADA

A0O29OO.ADA

002_A0O_EARTH_REL_ROT_RATE.ADA

002_B00_LATITUDE.ADA

002_OD0_LATITUDE_USINa_ATAN.ADA

A002A00.ADA

A002BOO.ADA

A002OO0.ADA

002_D00_LONaiTUDE.ADA

002_E00_WANDER_ANOLE.ADA

002_F00_EAST_VEL_SIN_COS.ADA

002_O00_NORTH_VEL_SIN_COS.ADA

002_H00_EARTH_REL_HOR_VEI.S_SIN_COS.ADA

0O2_I00_LATiTUDE_USrNa_ATAN2.ADA

A002D00.ADA

A002E00.ADA

A002F00.ADA

A002O00.ADA

A002H00.ADA

A002100.ADA

(K)2_JOO_LONOITUDE_lTSrNO_ATAN2.ADA

002_KOO_WANDER_ANai.E_USrNO_ATAN2.ADA

61 l_000_WOS72_Mi:i"RK_.ADA

6 1.\.000_WOS72_UNiTLES.S_.ADA

614_000_CONVERSION_FACTORS_.ADA

615_000_UNrVERSAL_CONSTANTS_. ADA

62I_000_BDT_.ADA

A002JOO.ADA

A002K00.ADA

A«l IO00.ADA

A6I3000.ADA

A614000. ADA

A6IS000.ADA

A62I0OO.ADA

46

TABLE B-l. ADA SOURCE CODE INVENTORY (2 OF 10)

Aimonici Benchmark inventory and Croxn-Reference

Development Nome ANSI Name

A621001. ADA

A622000.ADA

A62 200 I.ADA

A63400O.ADA

62l_OOI_BDT.ADA

622_000_KDT_.ADA

622_00I_KDT.ADA

6MJIOO_CL.OCK_I1ANDLER_.ADA

«M_00l_CLOCK_HANDLER.ADA

644_000_DCM_.ADA

A63400 I.ADA

A644000.ADA

644_00I_DCM.ADA

65 l_000_KALMAN_COMMON_.ADA

•9 l_00l_rCALMAN_COMMON.ADA

651_ IOO_PU1_0_MANAOER.ADA

•S l_200_P_MANAOER.ADA

65 l_300_PHI_MANAGER.ADA

652_O00_KALMAN_COMPACT_.ADA

A64400 I.ADA

A651000. ADA

A65100 I.ADA

A63II00.ADA

A63I200.ADA

A651300. ADA

A652OO0.ADA

652_OOI_KALMAN_COMPACT.ADA A6520OI.ADA

652_IOO_CKO.ADA A652IOO.ADA

652_200_17PDATE_P.ADA A652200.ADA

652_3«)_UPDATE_X.ADA A652300.ADA

652_400_UPDATE_P_AND_X.ADA

652_500_KALMAN_IJPDATE.ADA

652_600_UPDATU_P_aENERAL.ADA

653_000JCALMAN_COMPL.ICATED_.ADA

653JXilJCAL.MAN_COMPLICATED.ADA

653_IOO_CXO.ADA

A652400.ADA

A6S2500.ADA

A652600.ADA

A653000.ADA

A65300 I.ADA

A653I00.ADA

653_200_UPDATE_P.ADA A653200.ADA

653_30O_UPDATE_X.ADA

653_400_IJPDATE_P_AND_X.ADA

A653300.ADA

A653400.ADA

653_5()0_KALMAN_UPDATE.ADA

653_6(IO_lIPDATE_P_aENERAl..ADA

A633SOO.ADA

A6536O0.ADA

M l_000_WA YPOINT_STEERINC}_.ADA

M l_00l_WAYPOINT_STEERINO.ADA

M l_300_STEERINO_VECTOR_OPNS.ADA

MI_3IO_!NrnALtZE.ADA

66 l_320_UPDATE. ADA

MI_400_TURN_ANOLE_AND_DIRECnON.ADA

MI_500_CRSSTRK_AND_IIDa_ERR_OI'NS.ADA

661_5 IO_COMP_WI n-N_TURNING.ADA

661_520_COMP_WHEN_NOTJ1 rRNINCJ.ADA

MI_530_COMPUTE.ADA

66 (_600_DIST_TO_nrRR_WA YPOINT.ADA

M l_700_CX5MP_TURN_NONTURN_DIS T.ADA

AMI000.ADA

AM 1001.ADA

AM 1300. ADA

AM 1310. ADA

AMI320.ADA

AM 1400. ADA

AM 1500. ADA

AMI5I0.ADA

AMI520.ADA

AMIS30.ADA

AMI600.ADA

AMI700.ADA

47

TABLE B-l. ADA SOURCE CODE INVENTORY (3 OF 10)

Aimonics Benchmark Inventory and Crosn-Rcfercnce

Development Name ANSI Name

66 l_800_TURN_TEST_OPNS.ADA A66I800.ADA

66l_8 IO_STOP_TESTADA A66I8I0.ADA

66I_820_START_TEST.ADA A66I820.ADA

66 l_900_STEERINa_VECTOR_OPNS_ARCSIN.ADA A66I900.ADA

66I_AOO_D1ST_TO_CURR_WAYPOINT_ARCSIN.ADA A66IA00ADA

68 l_000_C_ALOEBRA_.ADA A68I000.ADA

68 l_00l_C_ALGEBRA ADA A68100I.ADA

68 l_200_MATRDC_OPNS ADA A68I200.ADA

68 l_230_SET_TO_lDENTiTY_MATRa.ADA A68I230.ADA

68 l_240_SET_TO_ZERO_MATRDC ADA

68 l_400_MATRTX_SCALAR_OPNS.ADA

A68I240.ADA

A68I400.ADA

68 l_S00_CROSS_PRODUCT ADA A68ISOO.ADA

68 l_6t»_MATRDC_VECTOR_MU_T. ADA A68I6O0.ADA

68 l_700_MATRK_MATRDC_MULT.ADA A68I700.ADA

682_000_OENERAL_ALOEBRA_.ADA A682O00.ADA

682_00l_OENERAL_ALOEBRA.ADA A68200I.ADA

682_ IOO_VECTOR_OPNS_UC.ADA A682IO0.ADA

682_200_MATRDC_OPNS_UCADA A682200.ADA

682_M0_DYN_SPARSE_MATRDC_UCADA A682300.ADA

682_400_SYMM_HA1.F_STORAGE_MATRK.ADA A682400.ADA

682_500_SYMM_FULL_STORAaE_MATRDC_UC.ADA A682S00.ADA

682_600_DIAOONAL_MATRKADA A682600.ADA

682_700_VECTOR_SCALAR_OPNS_UC.ADA A682700ADA

682_800_MATRK_SCAIAR_OPNS_UC.ADA A68280O.ADA

682_900_DIAa_MATRDC_SCALAR_OPNS.ADA A682900.ADA

682_AO0_MATRIX_MATRK_MULT_UR.ADA A682A00ADA

682_BOO_MA1RK_VECTOR_MU1.T_UR.ADA A682B00ADA

682_C00_VECTOR_VECTOR_TRANS_MULT_UR.ADA A682O00ADA

682_D00_MATRK_MATRK_TRANS_MULT_UR.ADA A682D0OADA

682_BOO_DOT_PRODUCT_OPN_UR.ADA A682EO0.ADA

682_FOO_D1AO_FULI_MATRK_ADD_URADA A682P0O.ADA

682_O00_VECTOR_OPNS_C.ADA A682O00ADA

682_HOO_MATRJX_OPNS_C.ADA A682HOO.ADA

682_J00_DYN_SPARSE_MATRK_C.ADA A682JO0ADA

682_K00_SYMM_rUl.L_STORAaH_MATRrX_C.AnA A682KOOADA

682_IJOO_VE(T()R_S('AI.AR_()PNS_C.AI)A A682UIO.ADA

682_MOO_MATRIX_SCALAR_OPNS_C.ADA A682MOO.ADA

682_N00_MATRIX_MA1RK_MUU_RADA A682N0O.ADA

682_P00_MATRK_VECTOR_MULT_R.ADA A682P00.ADA

682_Q00_VECTOR_VECTOR_TRANS_MUI.T_R.ADA A682Q0O.ADA

48

TABLE B-l. ADA SOURCE CODE INVENTORY (4 OF 10)

Aimonks Benchmark Inventory and Crost-Reference

Development Name

682_R00_MATRTX_MATRIX_TRANS_MULT_R.ADA

ANSI Name

A682R00.ADA

682_SOO_DOT_PRODUCT_OPN_R.ADA

682_TOO_DIAG_RJLI._MATRBC_ADD_R.ADA

682_WX>_VECTOR_MATRIX_MULT_UR.ADA

A682S00.ADA

A682T00.ADA

A682U00.ADA

682_V00_VECTOR_MATRIX_MULT_R.ADA

682_W00_ABA_TRANS_DSP_MATRDC_SQ_MATRK.ADA

682_X00_ABA_TRANS_VECTOR_SQ_MATRIX.ADA

682_YOO_ABA_TRANS_VECTOR_SCALAR.ADA

<

<
 <

 <

5s _ 58 58
<

< < <

682_ZOO_COL_MATRIX_OPNS.ADA A682Z00.ADA

683_O00_STANDARD_TRIG_.ADA

68.\OOI_STDTRIO_SYSFNS.ADA

684_000_GEOMETRJC_.ADA

684_00l_OEOMETRIC.ADA

684_IOO_UNIT_RADIAL_VECTOR.ADA

684_2TO_UNIT_Nl._VECTOR.ADA

684_300_SEG_UN1T_NL_VECTOR.ADA

A683000.ADA

A68300 I.ADA

A68400O.ADA

A68400I.ADA

A684I00.ADA

A684200.ADA

A684300.ADA

684_400_GREAT_CmCLE_ARC_LENOTH.ADA

684_500_SEO_UNrr_NL_VECTOR_ARCSIN.ADA

686_000_S1GNAL_.ADA

686_001_SlONAL.ADA

A684400.ADA

A684S00.ADA

A686000.ADA

A68600I.ADA

686_ IOO_UL_UMITER.ADA A686I00.ADA

686_200_U_LIMrTER.ADA

686_.100_L_LIMriER.ADA

686_400_ABS_LIMITER.ADA

686_500_ABS_LIMrrER_W_FLAG.ADA

686_600_FIRST_ORDER_F1LTER.ADA

686_700_TU.SnN_LAG_FILTER.ADA

686_80O_TUSTIN_LEAD_LAa_FILTER.ADA

A686200.ADA

A686300.ADA

A686400.ADA

A686500.ADA

A686600.ADA

A686700.ADA

A686800.ADA

686_900_SECOND_ORDER_FILTER.ADA

686_A00_TUSTIN_INIEORATOR_W_LrMrr.ADA

686_B00_TUSTIN_INT_W_ASYM_LlMn-.ADA

A686900.ADA

A686A00.ADA

A686BO0.ADA

687_000_GP_MATH_.ADA

687_OOI_GP_MATO.ADA

687_ IOO_LOOKUP UVEN.ADA

687_200_LOOKUPJINE VEN.ADA

687_300_BNCREMENTOR.ADA

687_400_DECREMEN! OR.ADA

687_500_RUN_AVG.ADA

687_600_ACCUM.ADA

A687000.ADA

A6870OI.ADA

A687KI0.ADA

A687200.ADA

A687300.ADA

A687400.ADA

A687500.ADA

A687600.ADA

687_700_CHANGE_ACCUM.ADA A687700.ADA

49

TABLE B-l. ADA SOURCE CODE INVENTORY (5 OF 10)

Armonics Benchmark Inventory and Crews-Reference

Development Name ANSI Name

«87_«00_CHANOE_CALC.ADA

687_900_rNTEORATORADA

A687800.AOA

A687900.ADA

687_A00_INTERPOLATE.ADA

687_D00_RSOS.ADA

A687A00.ADA

A687D00.ADA

687_B0O_SK3N.ADA

687_F0O_MEAN_VAL.ADA

A687B0O.ADA

A687P0O.ADA

6«7_O00_MAD.ADA

687_H(IO_LOOKUP_TWOWAY.ADA

A687O00.ADA

A687HOO.ADA

688_00l_POLYNOMIALS.ADA

68«_2O0_CHEBYSHEV.ADA

688_2 IO_RADIAN_OPERATIONS.ADA

S88_220_DEOREE_OPERATIONS.ADA

688_230_SEM1CIRCLE_OPERATK)NS7VDA

688_300_FKE.ADA

688_3 l0_SEMICIRCLE_OPERATlONS.ADA

688_400_HART.ADA

A6B800I.ADA

A688200.ADA

A6882IO.ADA

A688220.ADA

A688230.ADA

A688300.ADA

A6883IO.ADA

A688400.ADA

688_4IO_RADIAN_OPERAT!ONS.ADA

688_420_DEORUE_OPERAT!ONS.ADA

«88_500_HASTINaS.ADA

A6884I O.ADA

A688420.ADA

A688300.ADA

688_5 IO_RADIAN_OPERATKWS.ADA A6883I0.ADA

688_520_DEGREE_OPERATIONS.ADA

688_800_MOD_NEWTON_RAPHSON.ADA

A688520.ADA

A688800.ADA

688_900_NEWTON_RAPHSON.ADA

fi88_AOO_TAYLOR_SERIES.ADA

688_A IO_RADIAN_OPERATK)NS.ADA

688_A20_DEOREE_OPERATIONS.ADA

A688900.ADA

A688AOO.ADA

A688AI0.ADA

A688A20.ADA

688_A40_NATURAL_LOa.ADA

688_A50_BASE_LOO.ADA

A<*8A40.ADA

A6MA50.ADA

688_BOO_OENL_POLYNOMIAL.ADA

688_CW)_SYSTEM_FUNCT10NS.ADA

688_CI0_RADIAN_OPNS.ADA

688_C20_SEMICIRCLE_OPNS.ADA

688_C30_DEOREE_OPNS.ADA

«88_C40_SQUARE_ROOT.ADA

«88_C50_B ASE_ 10.ADA

«88_C60_BASE_N.ADA

688_DW_OfWTrNUED_FRACTK)NS.ADA

688_DI0_RAD!AN_OPERATlONS.ADA

<W"_EOO_CODY_WArrE.ADA

«88_E40_NATURAL_LOa.ADA

A688BOO.ADA

A688G0OADA

A688CI0.ADA

A688C20.ADA

A688O0.ADA

A688C40.ADA

A688C50.ADA

A<S88CfiO.ADA

AA88DOD.ADA

AA88DIO.ADA

A688EOO.ADA

A688E40.ADA

50

TABLE B-l. ADA SOURCE CX)DE INVENTORY (6 OF 10)

Armonics Benchmark Inventory and Cross-Reference

t Development Nnme ANSI Name

688_E50_BASE_N.ADA A688E30.ADA

fi88_FOO_REDUCTION.ADA A688F00.ADA

• 85 l_000_UNIT_CONVERSION_. ADA A8 51000. ADA

85 l_00l_UNIT_CONVERSION.ADA A85I0OI.ADA

890_000_QUATERNION_.ADA A890000.ADA

890_OOI_QUATERNION.ADA A89000I.ADA

890_IOO_EULER.ADA A890I00.ADA

890_200_NORMALEED.ADA A89020O.ADA

I Illi Missile Code (some modified)

B ARO_ALT_FOR_KF_ IT-SI S.ADA MBAFK1T.ADA

BARO_TEST_DRlVER.ADA MBROTES.ADA

DATA_RETRIEVAI._POR_aUlDOPNS_TEST.ADA MDTARET.ADA

DO_SUM_BARO_Ai;riMETER_POR_BlAS_TEST.ADA MDSUMBA.ADA

DUMMY.AM.ADA MDMMYAM.ADA

DUMMY_DO_SUM_BARO.ADA MDMMYDO.ADA

DUMMY_INmALIZE_NAVIOATOR.ADA MDMMYIN.ADA

DUMMY_VELOCnY_COMPUTATIONS.ADA MDMMYVE.ADA

F.ARTH_TO_BODY_TRANSPORM.ADA MERTHTO.ADA

ENVIRONMENT_I:OR_KF_TE_TS.ADA MEVIRON.ADA

EXECUTE_NAVIGATORADA MXNAVIO.ADA

l:XKCUTE_NAVIGATOR_TEST.ADA MEXECUT.ADA

EX_NAV_KA1.MAN_FILTER_STUB.ADA MEXNAVK.ADA

OUlD_COMPUlBR_FOR_OUrDOPNS_TEST.ADA MOUIDCO.ADA

INCORPORAT1LKAI.MAN_CORR.AI)A MINCORP.ADA

INTERNAI._BUS_BROADCAST_POR_KF_TESTS.ADA MINTERN.ADA

ISA_FOR_KF_TESTS.ADA

KALM AN_FILTER_STUB.ADA

MISAFORADA

MKALMAN.ADA

M007_ IOO_GU1DANCE_OPNS. ADA MOOT 100. A DA

M007_l IO_PROCESSOR_MODIFIED.ADA M007IIO.ADA

M007_l 11_PR1NCIPA1._VA1.UE.ADA M007II I.ADA

M007_l 12_PERl=ORM_lNIT.ADA M007II2.ADA

M007_ 113_WAYTT_CNTRl._OPNS.ADA M00711.1. ADA

M<K>7_ 1 l4_ll.K)in •_'XJNTROL.ADA M007II4.ADA

M007_l l5_IIRST_ORDER.ADA M007II5.ADA

MOI2J*>0_aUIDAN<T_DATA_TYPES_.ADA Mni2000.ADA

MOI2_OOI_GUIDANCE_DATA_TYPl-S.ADA M0I200I.ADA

; M(»l5_«nf)_MISSION_DATA_.ADA MO 13000. ADA

MOI4_Om_NAV_CT}MPUTER_DATA_TYPES_.ADA MOI4000.ADA

Mni4_0t>l_NAV_COMPUTER_DATA_TYPES.ADA M0I400I.ADA

> MOI5_OOI_NAVIOATION_OPERATIONS.ADA M0I500I.ADA

51

TABLE B-l. ADA SOURCE CODE INVENTORY (7 OF 10)

AimonicK Benctimaik Inventory and Croas-Reference

Development Name ANSI Name

MOI5_0200_EXECUTE_NAV1QATORADA MOI5020ADA

M0IS_0900_SLAVE_CNEADA M0I.WX1.ADA

M0IS_0C00_BARO_LOOP_COMinrrATIONS.ADA M01 WOO ADA

M0l5_0HT»_NAV_OPS_TEST_CODEADA MOI50HOADA

MOI7_000_ALfONMENT_MEASUREMENT.S_.ADA MO 17000 ADA

MOI«_000_NAV_SYSTEM_.ADA MOiaoOOADA

MOI9_000_KALMAN_TYPES_ADA MO 19000. A DA

MOI9_00l_KALMAN_TYPESADA MO 19001. ADA

MOI9_OIOO_F_OPERATIONS.ADA M0I90I0ADA

M019_0200_PIII_OPERATIONS.ADA MO 19020. ADA

MOI9_0800_ACITVEJCHPOADA MO 19010. A DA

MO I9_0900_PASSIVE_KHPOADA M0I9O90ADA

M0l9_0A00_DOPPLER_KHPO.ADA M0I90AO.ADA

M02I .O0O_KAI.MAN_FILTER_.ADA M02IOOOADA

M022_000_ENVIRONMENT_.ADA MO22OO0ADA

MO_4_000_H_ROW_.ADA MO24O00ADA

M024_00l_H_ROW.ADA M02400IADA

M6I I_000_WOS72_METR1C_.ADA M611000 ADA

M6I2_000_WOS72_EN01NEERINO_.ADA M6I2O0OADA

MEASUREMENTS_FOR_KF_TESTS.ADA MMEASURADA

MESSAaE_MANAOER_POR_OUIDOI>NS_TEST.ADA MMESSAOADA

M!SSION_DATA_FOR_OUIDOPNS_TEST.ADA MMISSIOADA

NAVIOA'nON_OPERATIONS_.ADA MNAVIOAADA

NAV_SYSTEM_STUB.ADA MNAVSYSADA

OCU_FOR_KF_TESTS.ADA MOCUFORADA

SCP_FOR_KF_TESTS.ADA MSCPFOR.ADA

TLM_FORJU_TESTS.ADA MTLMPOR.ADA

VKLOaTY_CX)MPUTATIONS.ADA MVELOCI.ADA

VELOCTrV_Ct)MPUTATIONS_TEST.ADA MVELOCT.ADA

VF.L_TEST_DRIVER.ADA MVELTESADA

WANDER_ANaLE_rOMPUTATIONS.ADA MWANDER.ADA

Compilation Benchmark Source C ode

IO_WGS72U_.ADA CI0WOS7.ADA

20_NPNAV_.ADA C20NPNA.ADA

2I_NPNAV.ADA C2INPNA.ADA

W_KPCT)MMON_.AI)A OOKFCO.ADA

.1IJCFlX>MMON.ADA CJIKFCO.ADA

40_KFCOMPl.ICATnD_.ADA C40KFCO.ADA

41JCFOOMPLICATEDADA C4IKFCOADA

W_POI.Y_.ADA C50POLY.ADA

52

TABLE B-l. ADA SOURCE CX)DE INVENTORY (8 OF 10)

Amionics Benchmark Inventory and Cross-Reference

> Development Name ANSIN-ime

5l_POLY.ADA C5IPOLYADA

fiO_GVMA_.ADA C6fX)VMA.ADA

• 6I_GVMA.ADA C6IGVMAADA

70_GPMATH_.ADA C70GPMA.ADA

7I_GPMATHADA C7IGPMA.ADA

80_CVMA_.ADA C80CVMAADA

8I_CVMA.ADA C8ICVMAADA

90.STDTRIG_.ADA C90STDT.ADA

9I_STDTRIG.ADA C9ISTDTADA

A0_OEO_.ADA CAOGEOX.ADA

AI_GEO.ADA CAIOEOX.ADA

B0_UNIVCONST_.ADA CBOUNIVADA

C0_CONVFACTORS_.ADA C03CONV.ADA

D0_BDT_.ADA CDOBDTX.ADA

CDIBDTX.ADA DI.BDT.ADA

E0_WPS_.ADA CEOWPSX.ADA

EI_WPS.ADA CEIWPSX.ADA

P0_WOS72_.ADA CF0WOS7.ADA

O0_KDT_.ADA COOKDTX.ADA

OI.KDT.ADA CGIKDTX.ADA

ZI_NP_TDRVR.ADA

Z2_WPS_TDRVR.ADA

CZINPTD.ADA

CZ2WPST.ADA

Z3_KF_TDRVR.ADA CZ3KFTD.ADA

Original Benchmark Source Code

683A_000_STANDARD_TR!G_.ADA

683A_0T)l_STDTRIG_FrKF_HASTINGS.ADA

A683AOO.ADA

A683A0O.ADA

A683B00.ADA fi83B_00O_STANDARD_TRIG_.ADA

*83B_00 l_STDTRIG_FIKE_HASTINGS.ADA A683BOO.ADA

683_002_STD_TRG_NOSYS.ADA A683O02.ADA

fi87_CO l_NEWTON_SQRT ADA A687O0I.ADA

688_000_POLYNOMIALS_.ADA A688000.ADA

688_3 IO_SEMICma.E_OPERATIONS.ADA A6883IO.ADA

ANALYZE.ADA BANALYZ.ADA

BENCHMARKrNG_TOOI,S.ADA BBNMARK.ADA

BENCHMARKING_TOOLS_.ADA BBNOIMA ADA

BENaiMARK.CONTENTS.APA BBNCHMR.ADA

; B ENOIM ARK.CONI ENTS_. ADA BBNCHMK.ADA

arEBYSHEVfi_DRiVER.ADA BCHEBY6.ADA

CHEBYSHEV9_DRIVER.ADA BCHEBY9.ADA

* CODY6_DRIVER.ADA BCDY6DR.ADA

53

TABLE B-l. ADA SOURCE CODE INVENTORY (9 OF 10)

Armooics Benchmaifc Inventory and Crona-Reference

Development Nome ANSI Name

CODY9_DRIVER.ADA BCDY9DR.ADA

CONTINUED6_DRIVER.ADA BCNT6DR.ADA

CONTINUED9_DRlVER.ADA BCNT9DR.ADA

CX3NTINUED_FRACTION_BENCHMARK.ADA BCNTFRA.ADA

CONTINUED_FRACTION_BENCHMARK_.ADA BCNTFRCADA

CPU_CLOCK.ADA BCPUCLO.ADA

FKE6_DRIVER.AOA BKIKE6D.ADA

FIKB9_DRlVnR.ADA BFKE9D.ADA

HART«_DRJVER.ADA BHART6DADA

HART9_DRJVER.ADA BHART9D.ADA

rUSTINOS6_DR.VER.ADA BHAST6D.ADA

HASTINOS9_DRjVER.ADA BIIAST9D.ADA

INT.BENCH MARK INO.TOOLS .ADA BINTBEN.ADA

INT_BENCHMARKINa_TOOLS_.ADA BINTBNCADA

IOVLMAN.COMMON_TEST.ADA BKALMNC.ADA

KALMAN_COMMON_TEST_.ADA BKALMAN.ADA

KALMAN_COMPACT_DRIVER.ADA BKLMANCADA

KALMAN_COMPACT_TEST.ADA BKLMNCO.ADA

KALMAN_COMPA(T_TRST_.ADA BKLMCOM.ADA

KALMAN_COMPtlCATED_DRJVERADA BKLMNCM.ADA

KALMAN_COMPLICATED_TEST.ADA BKJ.NCOM.ADA

KALMAN_COMPLICATED_TEST_.ADA BKLMCOM.ADA

MATRK_OUTPUT.ADA BMATRK.ADA

MATRIX_OtrrPUT_.ADA BMTRDCO.ADA

NEWTON6_DRJVER.ADA BNWTN6D.ADA

NEWTON9_DRIVER.ADA BNEWTN9.ADA

POLYNOMlALS_NO_SYS_FUNC.ADA BPLYNOM.ADA

P< ILYNOM1 ALS_NO_SYS_FUNC_.ADA BPOLYNO.ADA

K)LYNOMIAL_BENCHMARK.ADA BPOLYNMADA

POLYNOMlAL_BENCHMARK_.ADA BPOLNOM.ADA

REDUCE_SIM_LOO.ADA BREDUCE.ADA

SYSTEM_DRTVER.ADA BSYSTEM.ADA

TAYLORf»_DEUREE„ DRIVER.ADA BTYLOR6.ADA

TAYLOR*_RADIAN_DRJVER.ADA BTAYLR6.ADA

TAYLOR9_DEUREE_DRTVER.ADA BTYLOR9.ADA

TAYLOR9RADIAN .DRIVER.ADA BTAYl.R9.ADA

Benchmark VAX/VMS CoHMBWlll Pre icedurc*

ACr_COMPn-ATION_RlJN.COM JACTCOM.COM

COMPU.ATION_BKNCHMARKS.COM JCMPtLA.COM

COMPD-F._BKNniMARK_SUPPORT.COM JCOMPIL.COM

TABLE B-l. ADA SOURCE CODE INVENTORY (CONCLUDED)

Amionics Benchmark Inventory and Cross-Reference

Development Name ANSI Name

COMPILE_TOOl.S.COM JCMPLTO.COM

INT_EXEC l_COM_LINK.COM JINT1CM.COM

INT_EXEC2_«)M_LINK.COM JINT2CM.COM

INT_EXEC3_COM_LlNK.COM JINT3CM.COM

MODIFIED_POLY6_COM_LINK .COM JMDPOL6.COM

MODIFIED_POl.Y9_COM_LINK.COM JMDPOL9.COM

POLY6_COM_LnMK.COM JPLY6CM.COM

PfJLY9_COM_LINK.COM JPLY9CM.COM

SYSTEM_COM_LINK.COM JSYSCML.COM

TLD_BENCHMARKS_C0M_L1NK.COM JTLDBCO.COM

TLD_COMPILATION_RUN.COM JTLDCOM.COM

VAX_ANALYZE_COM_LINK.COM JVAXANL.COM

VAX_ANALYZE_POLY.COM JVAXALY.COM

VAX_BENCHMARKS_COM_LINK.COM JVAXBSC.COM

VA X_COMPnJVTION_RUN.COM JVAXCOM.COM

VAX_IN1_EXECI_RUN.COM JVAXI1R.COM

VAX_IN1_EXEC2_RUN.COM JVAXI2R.COM

VAX_INT_EXEC3_RUN.COM JVAXI3R.COM

VAX_POLY_RlW.COM JVAXPRU.COM

ANSI/Development Name Convei ■sion

ANSI2DV.COM ANSI2DV.COM

DV2ANS1.COM DV2ANSI.COM

Standard Output Data Files

VAX_1NT_EXECI_RUN.DAT DVXIEIR.DAT

VA X_INT_EXEC2_RUN.DAT DVXD32R.DAT

VAX_INT_EXEC3_RUN.DAT DVXD33R.DAT

HART6_DRJVER.ANA DHART6D.ANA

HART6_DRTVER.DAT DHART6D.DAT

55/56 (Blank)

INITIAL DISTRIBUTION LIST

GTE GOVERNMENT SYS CORP 1 CARNEGIE MELLON UNIV/
> ADVANCED DI&xTAL SYSTEMS 1 SOFTWARE ENGINEERING INST 1

AFATL/FXG 1 \ N0AA/ERL/R/E/AL1 1
MILITARY COMPUTER SYSTEMS ! INTERMETRICS, INC/G. RENTH 1

1 LOCKHEED/O/62-81, B/563, F15 I INTERMETRICS, INC/D.P. SMITH 1
HUGHES/FULLERTON 1 FORD AEROSPACE/WEST DEVEL DIV 1
UNISYS/MS-E1D08 1 AD/ENE 1
WESTINGHOUSE/BALTIMORE I R0CKWELL/MS-GA21 1
AFWAL/AAAS-2 1 GRUMMAN CORP/MS D-31-237 1
BOOZ-ALLEN 4 HAMILTON, INC 1 INSTITUTE OF DEFENSE ANALYSIS 1
BOEING AEROSPACE COMPANY/MS 8H-09 I TELEDYNE BROWN/MS 178 1
BOEING AEROSPACE CO 1 USAF/TAWC/SCAM 1
AD/YGE I BOEING AEROSPACE CO/D. LINDBERG 1
SOFTWARE PRODUCTIVITY CONSORTIUM « > LOGICON 1
ARMY CECOM/AMSEL-COM-IA I EASTMAN KODAK/DEPT 47 1
NAVAL TRAINING SYS CENTER/CODE 251 1 SYSTEMS CONTROL TECH, INC 1
SCIENCE APPLICATIONS INTL CORP 1 E-SYSTEMS/GARLAND DIV 1
RAYTHEON/MSL SYS DIVISION 1 AFWAL/AAAF 1
CALSPAN 1 MARTIN DEVELOPMENT 1
KAMAN SCIENCES CORPORATION ! MA COMPUTER ASSOCIATES INC 1
NAVAL RESEARCH LAB/CODE 5595 1 IBM FEDERAL SYS DIV/MC 3206C 1
CARNEGIE MELLON UNIV/SEI/SHOLOM 1 MCDONNELL DOUGLAS/INCO, INC 1
COLEMAN RESEARCH CORP 1 UNITED TECH, ADVANCED SYS 1
COLSA, INC 1 MCDONNELL AIRCRAFT CO/DEPT 300 1
CONTROL DATA CORPORATION 1 WESTINGHOUSE ELEC/MS 132 1
WINTEC 1 MHP FU-TECH, INC 1
CONTROL DATA/DEPT 1855 I ITT AVIONICS 1
DACS/RADC/COED 1 COSMIC/UNIV OF GA 1
RAYTHEON/EQPT DIV I NAVAL OCEAN SYS CENTER/CODE 123 1
BMO/ACB I NAVAL WEAPONS CTR/CODE 3922 1
DDC-I, INC I ODYSSEY RESEARCH ASSOCIATES, INC 1
ENGINEERING & ECONOMICS RESEARCH/ USA ELEC PROVING GRD/STEEP MT-DA 1

DIV OFFICE PATHFINDER SYS 1
BDM CORP I BDM CORPORATION 1
AFATL/FXG/EVERS I PERCEPTRONICS, INC 1
ESD/SYW-JPMO I PHOENIX INTERNATIONAL 1
FORD AEROSPACE & CQMM CORP/MS H04 1 MCDONNELL DOUGLAS ASTRO CO 1
UNIV OF COLORADO #202 I GTE LABORATORY/RUBEN PRIETO-DIAZ 1
ANALYTICS PROPRIETARY SOFTWARE SYSTEMS 1
AFWAL/FIGL I ADVANCED TECHNOLOGY 8
WESTINGHOUSE ELECTRIC CORP/MS 5220 I STANFORD TELECOMMUNICATIONS, INC 1
GENERAL DYNAMICS/MZ W2-5530 1 RATIONAL 1
HONEYWELL INC I LOCKHEED MISSILES & SPACE CO 1
TAMSCO I HERCULES DEFENSE ELEC SYS 1
STARS 1 AEROSPACE CORP 1

1
FORD AEROSPACE/MS 2/206 ROGERS ENGINEERING & ASSOCIATES 1
GRUMMAN HOUSTON CORPORATION 1 ADASOFT INC 1
NAVAL AVIONICS CENTER/NAC-825 1 ESD/XRSE 1
NASA JOHNSON SPACE CENTER/EH/GHG 1 SANDERS/MER 21-1212

* BOEING AEROSPACE/MS-8Y97 1 CSC/ERIC SCHACHT 1
HARRIS CORPORATION/GISD 1

57

COMPUTER TECH ASSOCIATES, INC 1

INITIAL DISTRIBUTION LIST (CONCLUDED)

SCIENCE APPLICATIONS INTER CORP
HQ CASE/CBRC
GOULD INC/CSD
HQ AFSPACECOM/LKWD/STOP 32
SVERDRUP/EGLIN
HONEYWELL INC/CLEARWATER
TECHNOLOGY SERVICE CORP
AEROSPACE/LOS ANGELES
SOFTWARE ARCHITECTURE & ENGIN
LORAL SYSTEMS GROUP/DA76-C2E
NADC/CODE 7033
UNISYS/PAOLA RESEARCH CTR
SIRIUS INC
GENERAL RESEARCH CORP
SOFTECH, INC/R.L. ZALKAN
SOFTECH, INC/R.B. QUANRUD
SOFTWARE CERTIFICATION INS
SOFTWARE CONSULTING SPECIALIST
SOFTWARE PRODUCTIVITY SOLUTIONS, INC
STAR-GLO INDUSTRIES INC
NADC/CODE 50C
WESTINGHOUSE/BALTIMORE
MITRE CORPORATION
SYSCON CORP/I. WEBER
SYSCON CORP/C. MORSE
SYSCON CORP/T. GROBICKI
AEROSPACE CORPORATION/M-8-026
TEXTRON DEFENSE SYSTEMS
GENERAL DYNAMICS/MZ 1774
TIBURON SYSTEMS, INC
TRW DEFENSE SYS GROUP
NASA SPACE STATION
BALLISTIC MSL DEF ADVANCED/
TECHNOLOGY CENTER
IBM CORPORATION/FSD
VISTA CONTROLS CORPORATION
VITRO CORPORATION
NAVAL RESEARCH LABORATORY/CODE 5150
CACI, INC
AFSC/PLR
DIRECTOR ADA JOINT PROGRAM OFFICE
MCDONNELL DOUGLAS ASTRONAUTICS/
E 434/106/2/MS22

SDIO/S/PI
ADVANCED SOFTWARE TECH SPECIALTIES
DTIC-DDAC
AFCSA/SAMI
AUL/LSE

FTD/SDNF
AFWAL/FIES/SURVIAC
HQ USAFE/INATW
AFATL/CC
AFATL/CA
AFATL/DOIL
6575 SCHOOL SQUADRON
IITRI

1
1
1
1
1
2
1
1

58

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE AIR HNtCE
WRIGHT LABORATORY (AFSC)

EGLIN AIR FORCE BASE, FLORIDA, 32542-5434

mm ^
SUBJECT: Removal of Distribution Statement and Export-Control Warning Notices

TO: Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number AD Number

«. 88-18-Vol-4 ADB 120 251
Z. 88-18-Vol-5 ADB 120 252
3 88-I8-V0I-6 ADB 120 253

-4. 88-25-Vol-l ADB 120 309
S. 88-25-Vol-2 ADB 120 310

fe. 88-62-Vol-l ADB 129 568
1, 88-62-Vol-2 ADB 129 569
^. 88-62-Vol-3 ADB 129-570

9• 85-93-Vol-l ADB 102-654 u~-

40. 85-93-Vol-2 ADB 102-655
KK. 85-93-Vol-3 ADB 102-656

-

KZ. 88-18-Vol-l ADB 120 248
»S. 88-18-Vol-2 ADB 120 249
14. 88-18-Vol-7 ADB 120 254
15. 88-I8-V0I-8 ADB 120 255-^
\1o. 88-18-Vol-9 ADB 120 256
(7. 88-18-Vol-lO ADB 120 257^
1fc.88-18-Vol-ll ADB 120 258
19.88-18-Vol-12 ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

A

Chief, Scientific and Technical AFDTC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA

KPMTMBfT OF TNI MR POM
HEAKUARTOW AM RORCEDEVEWMENT TEST CENTO (AF8Q

MUM AIR FORCE BASE. FLOMOAKMMOM

REPLY TO
ATTNOF: PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: clearance for Public Release

TO: WL/MJA

/
The following technical reports have been reviewed and are approved for
public release; AFATL-TR-88-18 (Volumes 1
4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2)
and AEA3J>TR-85-93 (Volumes 1 thru 3).

& 2), AFAIL-TR-88-18 (Volumes
, AFATL-TRr88-62 (Volumes 1 thru 3)

%,
VCCINiTl N. PRIBYLA, Lt Col,
Chief of Public Affairs

<0

AniKVPA 92-039

